login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A265093
a(n) = Sum_{k=0..n} q(k)^2, where q(k) = partition numbers into distinct parts (A000009).
3
1, 2, 3, 7, 11, 20, 36, 61, 97, 161, 261, 405, 630, 954, 1438, 2167, 3191, 4635, 6751, 9667, 13763, 19539, 27460, 38276, 53160, 73324, 100549, 137413, 186697, 252233, 339849, 455449, 607549, 808253, 1070397, 1412622, 1858846, 2436446, 3182942, 4147266
OFFSET
0,2
COMMENTS
In general, for m >= 1, Sum_{k=0..n} q(k)^m ~ 2*sqrt(3*n)/(m*Pi) * q(n)^m ~ exp(Pi*m*sqrt(n/3)) / (Pi*m * 2^(2*m-1) * 3^(m/4-1/2) * n^(3*m/4-1/2)), where q(k) is A000009(k).
LINKS
FORMULA
a(n) = Sum_{k=0..n} A000009(k)^2.
a(n) ~ exp(2*Pi*sqrt(n/3))/(16*Pi*n).
MATHEMATICA
Table[Sum[PartitionsQ[k]^2, {k, 0, n}], {n, 0, 50}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Dec 01 2015
STATUS
approved