login
A368032
Number of free linear midpoint-free polycubes of size n, identifying rotations and reflections.
0
1, 1, 1, 2, 3, 7, 11, 20, 34, 65, 113, 197, 315, 488, 685, 1002, 1409, 2019, 2679, 3667, 4837, 6558, 8474, 11018, 13786, 17882, 22431, 28918, 36411, 46905, 59183, 76343, 96372, 123464, 153738, 193710, 237629, 294513, 357010, 436593
OFFSET
1,4
COMMENTS
Linear polycubes have two end points with one neighbor, the remaining cubes all have two neighbors.
Midpoint-free means that no three cubes are in positions (x,y,z), (x+dx,y+dx,z+dz), and (x+2*dx,y+2*dx,z+2*dz).
EXAMPLE
The polycubes for n <= 6 are:
n=1:
0,0,0
n=2:
0,0,0; 0,0,1
n=3:
0,0,0; 0,0,1; 0,1,0
n=4:
0,0,0; 0,0,1; 0,1,0; 1,0,1
0,0,0; 0,0,1; 0,1,1; 0,1,2
n=5:
0,0,0; 0,0,1; 0,1,0; 1,0,1; 1,0,2
0,0,0; 0,0,1; 0,1,0; 1,0,1; 1,1,0
0,0,0; 0,0,1; 0,1,1; 1,1,1; 1,1,2
n=6:
0,0,0; 0,0,1; 0,1,0; 1,0,1; 1,0,2; 1,1,0
0,0,0; 0,0,1; 0,1,0; 1,0,1; 1,0,2; 1,1,2
0,0,0; 0,0,1; 0,1,0; 1,0,1; 1,1,1; 1,1,2
0,0,0; 0,0,1; 0,1,1; 0,1,2; 1,1,2; 1,1,3
0,0,0; 0,0,1; 0,1,1; 0,1,2; 1,1,2; 1,2,2
0,0,0; 0,0,1; 0,1,1; 1,1,1; 1,1,2; 1,2,2
0,0,0; 0,0,1; 0,1,1; 1,1,1; 1,2,1; 1,2,2
CROSSREFS
Cf. A368031.
Sequence in context: A160434 A139630 A245738 * A265093 A133044 A014529
KEYWORD
nonn
AUTHOR
Joerg Arndt, Dec 09 2023
STATUS
approved