login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A133044
Area of the spiral of equilateral triangles with side lengths which follow the Padovan sequence, divided by the area of the initial triangle.
2
1, 2, 3, 7, 11, 20, 36, 61, 110, 191, 335, 591, 1032, 1816, 3185, 5586, 9811, 17207, 30203, 53004, 93004, 163229, 286430, 502655, 882111, 1547967, 2716528, 4767152, 8365761, 14680930, 25763171, 45211271, 79340235, 139232356, 244335860, 428779421, 752455502, 1320467391
OFFSET
1,2
COMMENTS
First differs from A014529 at a(8).
FORMULA
From Colin Barker, Sep 18 2013: (Start)
Conjecture: a(n) = a(n-1) + a(n-2) + a(n-3) - a(n-4) + a(n-5) - a(n-6).
G.f.: x*(x^3+x+1) / ((x^3-x^2+2*x-1)*(x^3-x-1)).
(End)
From Félix Breton, Dec 17 2015: (Start)
a(n) = 2*p(n+4)*p(n+5) - p(n+2)^2 where p is the Padovan sequence (A000931). This establishes Colin Barker's conjecture, because
a(n) = a(n-1) + p(n+4)^2
= a(n-1) + (p(n+1) + p(n+2))^2
= a(n-1) + p(n+1)^2 + p(n+2)^2 + 2*p(n+1)*p(n+2) - p(n-1)^2 + p(n-1)^2
= a(n-1) + (a(n-3)-a(n-4)) + (a(n-2)-a(n-3)) + a(n-3) + (a(n-5)-a(n-6))
= a(n-1) + a(n-2) + a(n-3) - a(n-4) + a(n-5) - a(n-6). (End)
MATHEMATICA
RecurrenceTable[{a[n + 6] == a[n + 5] + a[n + 4] + a[n + 3] - a[n + 2] + a[n + 1] - a[n], a[1] == 1, a[2] == 2, a[3] == 3, a[4] == 7, a[5] == 11, a[6] == 20}, a, {n, 1, 2000}] (* G. C. Greubel, Dec 17 2015 *)
Rest@ CoefficientList[Series[x (x^3 + x + 1)/((x^3 - x^2 + 2 x - 1) (x^3 - x - 1)), {x, 0, 38}], x] (* Michael De Vlieger, Feb 21 2018 *)
PROG
(PARI) Vec((x^3+x+1)/((x^3-x^2+2*x-1)*(x^3-x-1)) + O(x^40)) \\ Andrew Howroyd, Feb 21 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Omar E. Pol, Nov 04 2007
EXTENSIONS
a(27) and beyond taken from G. C. Greubel's table. - Omar E. Pol, Dec 18 2015
a(589) in b-file corrected by Andrew Howroyd, Feb 21 2018
STATUS
approved