OFFSET
0,2
COMMENTS
In general, Sum_{k=0..n} p(k)^m ~ sqrt(6*n)/(m*Pi) * p(n)^m ~ exp(m*Pi*sqrt(2*n/3)) / (m * Pi * 3^((m-1)/2) * 2^(2*m-1/2) * n^(m-1/2)), for m >= 1.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..5000
FORMULA
a(n) ~ exp(2*Pi*sqrt(2*n/3)) / (16*sqrt(6)*Pi*n^(3/2)).
a(n) = 1 + A209536(n). - Alois P. Heinz, Oct 21 2018
MAPLE
a:= proc(n) option remember; `if`(n<0, 0,
combinat[numbpart](n)^2+a(n-1))
end:
seq(a(n), n=0..40); # Alois P. Heinz, Oct 21 2018
MATHEMATICA
Table[Sum[PartitionsP[k]^2, {k, 0, n}], {n, 0, 50}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Jun 26 2015
STATUS
approved