login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A259399
a(n) = Sum_{k=0..n} p(k)^2, where p(k) is the partition function A000041.
6
1, 2, 6, 15, 40, 89, 210, 435, 919, 1819, 3583, 6719, 12648, 22849, 41074, 72050, 125411, 213620, 361845, 601945, 995074, 1622338, 2626342, 4201367, 6681992, 10515756, 16449852, 25509952, 39333476, 60172701, 91577517, 138390481, 208096282, 310976731, 462512831
OFFSET
0,2
COMMENTS
In general, Sum_{k=0..n} p(k)^m ~ sqrt(6*n)/(m*Pi) * p(n)^m ~ exp(m*Pi*sqrt(2*n/3)) / (m * Pi * 3^((m-1)/2) * 2^(2*m-1/2) * n^(m-1/2)), for m >= 1.
LINKS
FORMULA
a(n) ~ exp(2*Pi*sqrt(2*n/3)) / (16*sqrt(6)*Pi*n^(3/2)).
a(n) = 1 + A209536(n). - Alois P. Heinz, Oct 21 2018
MAPLE
a:= proc(n) option remember; `if`(n<0, 0,
combinat[numbpart](n)^2+a(n-1))
end:
seq(a(n), n=0..40); # Alois P. Heinz, Oct 21 2018
MATHEMATICA
Table[Sum[PartitionsP[k]^2, {k, 0, n}], {n, 0, 50}]
CROSSREFS
Partial sums of A001255.
Sequence in context: A026270 A321646 A246563 * A307128 A172399 A001654
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Jun 26 2015
STATUS
approved