login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A307128
Expansion of Product_{j>=1} (1 + (-1 + Product_{k>=1} (1 + x^k))^j).
6
1, 1, 2, 6, 15, 40, 103, 266, 683, 1753, 4481, 11417, 28993, 73414, 185424, 467302, 1175322, 2950467, 7393090, 18492029, 46173538, 115102596, 286482967, 711990108, 1767048214, 4379814978, 10842382074, 26808912074, 66212421302, 163351562975, 402575169429, 991119918949
OFFSET
0,3
FORMULA
G.f.: q(q(x) - 1), where q(x) = g.f. of A000009 (number of partitions into distinct parts).
MATHEMATICA
nmax = 31; CoefficientList[Series[Product[(1 + (-1 + Product[(1 + x^k), {k, 1, nmax}])^j), {j, 1, nmax}], {x, 0, nmax}], x]
CROSSREFS
Sequence in context: A321646 A246563 A259399 * A172399 A001654 A062106
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Mar 26 2019
STATUS
approved