OFFSET
1,6
COMMENTS
Prime divisors are counted with multiplicity. - Harvey P. Dale, Oct 23 2020
It is an open question as to whether omega(p#+1) = bigomega(p#+1) = a(n); that is, as to whether the Euclid numbers are squarefree. Any square dividing p#+1 must exceed 2.5*10^15 (see Vardi, p. 87). - Sean A. Irvine, Oct 21 2023
REFERENCES
Ilan Vardi, Computational Recreations in Mathematica, Addison-Wesley, 1991.
LINKS
Max Alekseyev, Table of n, a(n) for n = 1..98
Hisanori Mishima, Factorizations of many number sequences
R. G. Wilson v, Explicit factorizations
FORMULA
a(n) = Omega(1 + Product_{k=1..n} prime(k)). - Wesley Ivan Hurt, Mar 06 2022
a(n) = 1 iff n is in A014545. - Bernard Schott, Mar 07 2022
EXAMPLE
a(6)=2 because 2*3*5*7*11*13+1 = 30031 = 59 * 509.
MAPLE
A054988 := proc(n)
numtheory[bigomega](1+mul(ithprime(i), i=1..n)) ;
end proc:
seq(A054988(n), n=1..20) ; # R. J. Mathar, Mar 09 2022
MATHEMATICA
a[q_] := Module[{x, n}, x=FactorInteger[Product[Table[Prime[i], {i, q}][[j]], {j, q}]+1]; n=Length[x]; Sum[Table[x[[i]][[2]], {i, n}][[j]], {j, n}]]
PrimeOmega[#+1]&/@FoldList[Times, Prime[Range[90]]] (* Harvey P. Dale, Oct 23 2020 *)
PROG
(PARI) a(n) = bigomega(1+prod(k=1, n, prime(k))); \\ Michel Marcus, Mar 07 2022
CROSSREFS
KEYWORD
nonn,hard
AUTHOR
Arne Ring (arne.ring(AT)epost.de), May 30 2000
EXTENSIONS
More terms from Robert G. Wilson v, Mar 24 2001
a(44)-a(81) from Charles R Greathouse IV, May 07 2011
a(82)-a(87) from Amiram Eldar, Oct 03 2019
STATUS
approved