login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A054988
Number of prime divisors of 1 + (product of first n primes), with multiplicity.
10
1, 1, 1, 1, 1, 2, 3, 2, 2, 3, 1, 3, 3, 2, 3, 4, 4, 2, 2, 4, 2, 3, 2, 4, 3, 2, 4, 4, 3, 3, 5, 3, 6, 2, 3, 2, 5, 4, 4, 2, 6, 3, 4, 3, 5, 6, 7, 2, 6, 3, 5, 3, 4, 2, 6, 5, 4, 5, 3, 5, 5, 5, 3, 3, 5, 5, 6, 3, 4, 4, 7, 5, 3, 4, 1, 2, 5, 5, 5, 4, 5, 3, 5, 4, 6, 5, 8
OFFSET
1,6
COMMENTS
Prime divisors are counted with multiplicity. - Harvey P. Dale, Oct 23 2020
It is an open question as to whether omega(p#+1) = bigomega(p#+1) = a(n); that is, as to whether the Euclid numbers are squarefree. Any square dividing p#+1 must exceed 2.5*10^15 (see Vardi, p. 87). - Sean A. Irvine, Oct 21 2023
REFERENCES
Ilan Vardi, Computational Recreations in Mathematica, Addison-Wesley, 1991.
FORMULA
a(n) = Omega(1 + Product_{k=1..n} prime(k)). - Wesley Ivan Hurt, Mar 06 2022
a(n) = A001222(A006862(n)). - Michel Marcus, Mar 07 2022
a(n) = 1 iff n is in A014545. - Bernard Schott, Mar 07 2022
EXAMPLE
a(6)=2 because 2*3*5*7*11*13+1 = 30031 = 59 * 509.
MAPLE
A054988 := proc(n)
numtheory[bigomega](1+mul(ithprime(i), i=1..n)) ;
end proc:
seq(A054988(n), n=1..20) ; # R. J. Mathar, Mar 09 2022
MATHEMATICA
a[q_] := Module[{x, n}, x=FactorInteger[Product[Table[Prime[i], {i, q}][[j]], {j, q}]+1]; n=Length[x]; Sum[Table[x[[i]][[2]], {i, n}][[j]], {j, n}]]
PrimeOmega[#+1]&/@FoldList[Times, Prime[Range[90]]] (* Harvey P. Dale, Oct 23 2020 *)
PROG
(PARI) a(n) = bigomega(1+prod(k=1, n, prime(k))); \\ Michel Marcus, Mar 07 2022
KEYWORD
nonn,hard
AUTHOR
Arne Ring (arne.ring(AT)epost.de), May 30 2000
EXTENSIONS
More terms from Robert G. Wilson v, Mar 24 2001
a(44)-a(81) from Charles R Greathouse IV, May 07 2011
a(82)-a(87) from Amiram Eldar, Oct 03 2019
STATUS
approved