login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A263001
Number of ordered pairs (k, m) with k > 0 and m > 0 such that n = pi(k*(k+1)) + pi(m*(m+1)/2), where pi(x) denotes the number of primes not exceeding x.
5
1, 0, 2, 1, 3, 1, 3, 2, 3, 3, 3, 4, 3, 4, 2, 5, 4, 2, 7, 2, 4, 5, 2, 7, 2, 5, 4, 4, 5, 3, 5, 6, 4, 5, 6, 3, 6, 6, 2, 9, 3, 5, 5, 5, 6, 5, 6, 5, 4, 7, 4, 7, 4, 5, 6, 7, 3, 5, 6, 7, 4, 7, 7, 5, 3, 9, 5, 7, 3, 8, 7, 5, 4, 8, 6, 6, 3, 10, 7, 3, 3, 11, 5, 7, 4, 8, 5, 4, 7, 7, 5, 8, 3, 8, 7, 4, 5, 9, 6, 9
OFFSET
1,3
COMMENTS
Conjecture: a(n) > 0 for all n > 2, and a(n) = 1 only for n = 1, 4, 6.
We have verified this for n up to 10^5.
See also A262995, A262999 and A263020 for similar conjectures.
EXAMPLE
a(1) = 1 since 1 = pi(1*2) + pi(1*2/2).
a(4) = 1 since 4 = pi(1*2) + pi(3*4/2).
a(6) = 1 since 6 = pi(2*3) + pi(3*4/2).
MATHEMATICA
s[n_]:=s[n]=PrimePi[n(n+1)]
t[n_]:=t[n]=PrimePi[n(n+1)/2]
Do[r=0; Do[If[s[k]>n, Goto[bb]]; Do[If[t[j]>n-s[k], Goto[aa]]; If[t[j]==n-s[k], r=r+1]; Continue, {j, 1, n-s[k]+1}]; Label[aa]; Continue, {k, 1, n}]; Label[bb]; Print[n, " ", r]; Continue, {n, 1, 100}]
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Oct 07 2015
STATUS
approved