OFFSET
1,1
COMMENTS
Dickson noted that this sequence is complete to 4100. Deshouillers, Hennecart and Landreau showed that this sequence is complete up to 10^245, and Kawada, Wooley and Deshouillers showed that it is complete beyond 10^220.
REFERENCES
J.-M. Deshouillers, K. Kawada and T. D. Wooley, On sums of sixteen biquadrates, Mem. Soc. Math. Fr. 100 (2005), pp. 120.
LINKS
J.-M. Deshouillers, F. Hennecart and B. Landreau, Waring's Problem for sixteen biquadrates - numerical results, Journal de Théorie des Nombres de Bordeaux 12:2 (2000), pp. 411-422.
L. E. Dickson, Recent progress on Waring's theorem and its generalizations, Bull. Amer. Math. Soc. 39:10 (1933), pp. 701-727.
Tanya Khovanova, Non Recursions
Eric Weisstein's World of Mathematics, Biquadratic Number
MATHEMATICA
Select[Range[1000], (pr = PowersRepresentations[#, 19, 4]; test = pr != {} && FreeQ[pr, r_List /; (Times @@ r) == 0]; If[test, Print[#]]; test) &] (* Jean-François Alcover, Oct 30 2012 *)
PROG
(PARI) is(n)=n%80==79 && n<600 && n>0 \\ Charles R Greathouse IV, Jan 23 2014
CROSSREFS
KEYWORD
nonn,fini,full
AUTHOR
EXTENSIONS
More terms from Arlin Anderson (starship1(AT)gmail.com). Jud McCranie remarks that probably all terms are shown.
STATUS
approved