login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 2^n - 1 + Fibonacci(n-1)*2^(n+1).
2

%I #16 Dec 25 2024 15:49:49

%S 1,11,23,79,223,703,2175,6911,22015,70655,227327,733183,2367487,

%T 7651327,24739839,80019455,258867199,837550079,2710044671,8769241087,

%U 28376563711,91825897471,297149661183,961586135039,3111737360383,10069752152063

%N a(n) = 2^n - 1 + Fibonacci(n-1)*2^(n+1).

%H Harry J. Smith, <a href="/A060160/b060160.txt">Table of n, a(n) for n = 1..200</a>

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (5, -4, -8, 8).

%F From _R. J. Mathar_, Feb 06 2010: (Start)

%F a(n) = 5*a(n-1) - 4*a(n-2) - 8*a(n-3) + 8*a(n-4).

%F G.f.: x*(1+6*x-28*x^2+16*x^3)/ ((1-x) * (2*x-1) * (4*x^2+2*x-1)). (End)

%p with(combinat, fibonacci): seq(2^n - 1 + fibonacci(n - 1)*2^(n+1), n=1..25);

%t Table[2^n-1+Fibonacci[n-1]2^(n+1),{n,30}] (* or *) LinearRecurrence[{5,-4,-8,8},{1,11,23,79},30] (* _Harvey P. Dale_, Dec 19 2021 *)

%o (PARI) a(n) = { 2^n - 1 + fibonacci(n - 1)*2^(n + 1) } \\ _Harry J. Smith_, Jul 02 2009

%Y Cf. A060161, A000045 (Fibonacci).

%K nonn

%O 1,2

%A Pieter Gosselink (pieter_gosselink(AT)lotus.com), Mar 12 2001

%E More terms from _Asher Auel_, Mar 16 2001