login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A104633
Triangle T(n,k) = k*(k-n-1)*(k-n-2)/2 read by rows, 1<=k<=n.
3
1, 3, 2, 6, 6, 3, 10, 12, 9, 4, 15, 20, 18, 12, 5, 21, 30, 30, 24, 15, 6, 28, 42, 45, 40, 30, 18, 7, 36, 56, 63, 60, 50, 36, 21, 8, 45, 72, 84, 84, 75, 60, 42, 24, 9, 55, 90, 108, 112, 105, 90, 70, 48, 27, 10, 66, 110, 135
OFFSET
1,2
COMMENTS
The triangle can be constructed multiplying the triangle A(n,k)=n-k+1 (if 1<=k<=n, else 0) by the triangle B(n,k) =k (if 1<=k<=n, else 0).
Swapping the two triangles of this matrix product would generate A104634.
LINKS
Isabel Cação, Helmuth R. Malonek, Maria Irene Falcão, and Graça Tomaz, Intrinsic Properties of a Non-Symmetric Number Triangle, J. Int. Seq., Vol. 26 (2023), Article 23.4.8.
FORMULA
G.f.: x*y/((1 - x)^3*(1 - x*y)^2). - Stefano Spezia, May 22 2023
EXAMPLE
First few rows of the triangle:
1;
3, 2;
6, 6, 3;
10, 12, 9, 4;
15, 20, 18, 12, 5;
21, 30, 30, 24, 15, 6;
28, 42, 45, 40, 30, 18, 7;
36, 56, 63, 60, 50, 36, 21, 8;
...
e.g. Col. 3 = 3 * (1, 3, 6, 10, 15...) = 3, 9, 18, 30, 45...
MAPLE
A104633 := proc(n, k) k*(k-n-1)*(k-n-2)/2 ; end proc:
seq(seq(A104633(n, k), k=1..n), n=1..16) ; # R. J. Mathar, Mar 03 2011
MATHEMATICA
Table[k*(k-n-1)*(k-n-2)/2, {n, 1, 20}, {k, 1, n}] // Flatten (* G. C. Greubel, Aug 12 2018 *)
PROG
(PARI) for(n=1, 20, for(k=1, n, print1(k*(k-n-1)*(k-n-2)/2, ", "))) \\ G. C. Greubel, Aug 12 2018
(Magma) [[k*(k-n-1)*(k-n-2)/2: k in [1..n]]: n in [1..20]]; // G. C. Greubel, Aug 12 2018
CROSSREFS
Cf. A062707, A158824, A104634, A001296, A000332 (row sums).
Sequence in context: A189073 A107271 A196565 * A102022 A064684 A371944
KEYWORD
nonn,tabl,easy
AUTHOR
Gary W. Adamson, Mar 18 2005
STATUS
approved