login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A062707
Table by antidiagonals of n*k*(k+1)/2.
4
0, 0, 0, 0, 1, 0, 0, 3, 2, 0, 0, 6, 6, 3, 0, 0, 10, 12, 9, 4, 0, 0, 15, 20, 18, 12, 5, 0, 0, 21, 30, 30, 24, 15, 6, 0, 0, 28, 42, 45, 40, 30, 18, 7, 0, 0, 36, 56, 63, 60, 50, 36, 21, 8, 0, 0, 45, 72, 84, 84, 75, 60, 42, 24, 9, 0, 0, 55, 90, 108, 112, 105, 90, 70, 48, 27, 10, 0
OFFSET
0,8
FORMULA
T(n, k) = T(n, 1)*T(1, k) = A001477(n)*A000217(k).
T(n, k) = A057145(n+2, k+1)-(k+1).
EXAMPLE
0 0 0 0 0 0 0 0 0
0 1 3 6 10 15 21 28 36
0 2 6 12 20 30 42 56 72
0 3 9 18 30 45 63 84 108
0 4 12 24 40 60 84 112 144
0 5 15 30 50 75 105 140 180
0 6 18 36 60 90 126 168 216
0 7 21 42 70 105 147 196 252
0 8 24 48 80 120 168 224 288
MAPLE
seq(seq(k*binomial(n-k+1, 2), k=0..n), n=0..12); # G. C. Greubel, Sep 02 2019
MATHEMATICA
Table[k*Binomial[n-k+1, 2], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Sep 02 2019 *)
PROG
(PARI) T(n, k) = k*binomial(n-k+1, 2);
for(n=0, 12, for(k=0, n, print1(T(n, k), ", "))) \\ G. C. Greubel, Sep 02 2019
(Magma) [k*Binomial(n-k+1, 2): k in [0..n], n in [0..12]]; // G. C. Greubel, Sep 02 2019
(Sage) [[k*binomial(n-k+1, 2) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Sep 02 2019
(GAP) Flat(List([0..12], n-> List([0..n], k-> k*Binomial(n-k+1, 2)))); # G. C. Greubel, Sep 02 2019
CROSSREFS
Main diagonal is A002411. Sum of antidiagonals is A000332.
Sequence in context: A062787 A131370 A261180 * A160230 A373418 A293500
KEYWORD
easy,nonn,tabl
AUTHOR
Henry Bottomley, Jul 11 2001
STATUS
approved