login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Table by antidiagonals of n*k*(k+1)/2.
4

%I #16 Sep 08 2022 08:45:03

%S 0,0,0,0,1,0,0,3,2,0,0,6,6,3,0,0,10,12,9,4,0,0,15,20,18,12,5,0,0,21,

%T 30,30,24,15,6,0,0,28,42,45,40,30,18,7,0,0,36,56,63,60,50,36,21,8,0,0,

%U 45,72,84,84,75,60,42,24,9,0,0,55,90,108,112,105,90,70,48,27,10,0

%N Table by antidiagonals of n*k*(k+1)/2.

%H G. C. Greubel, <a href="/A062707/b062707.txt">Antidiagonals n = 0..100, flattened</a>

%F T(n, k) = T(n, 1)*T(1, k) = A001477(n)*A000217(k).

%F T(n, k) = A057145(n+2, k+1)-(k+1).

%e 0 0 0 0 0 0 0 0 0

%e 0 1 3 6 10 15 21 28 36

%e 0 2 6 12 20 30 42 56 72

%e 0 3 9 18 30 45 63 84 108

%e 0 4 12 24 40 60 84 112 144

%e 0 5 15 30 50 75 105 140 180

%e 0 6 18 36 60 90 126 168 216

%e 0 7 21 42 70 105 147 196 252

%e 0 8 24 48 80 120 168 224 288

%p seq(seq(k*binomial(n-k+1,2), k=0..n), n=0..12); # _G. C. Greubel_, Sep 02 2019

%t Table[k*Binomial[n-k+1, 2], {n,0,12}, {k,0,n}]//Flatten (* _G. C. Greubel_, Sep 02 2019 *)

%o (PARI) T(n,k) = k*binomial(n-k+1,2);

%o for(n=0,12, for(k=0,n, print1(T(n,k), ", "))) \\ _G. C. Greubel_, Sep 02 2019

%o (Magma) [k*Binomial(n-k+1,2): k in [0..n], n in [0..12]]; // _G. C. Greubel_, Sep 02 2019

%o (Sage) [[k*binomial(n-k+1,2) for k in (0..n)] for n in (0..12)] # _G. C. Greubel_, Sep 02 2019

%o (GAP) Flat(List([0..12], n-> List([0..n], k-> k*Binomial(n-k+1,2)))); # _G. C. Greubel_, Sep 02 2019

%Y Main diagonal is A002411. Sum of antidiagonals is A000332.

%K easy,nonn,tabl

%O 0,8

%A _Henry Bottomley_, Jul 11 2001