|
|
A062709
|
|
a(n) = 2^n + 3.
|
|
25
|
|
|
4, 5, 7, 11, 19, 35, 67, 131, 259, 515, 1027, 2051, 4099, 8195, 16387, 32771, 65539, 131075, 262147, 524291, 1048579, 2097155, 4194307, 8388611, 16777219, 33554435, 67108867, 134217731, 268435459, 536870915, 1073741827, 2147483651
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
COMMENTS
|
Written in binary a(n) is 1000...00011 for n > 1.
For n >= 2, a(n) is the minimal k for which A000120(k(2^n-1)) is not multiple of n. - Vladimir Shevelev, Jun 05 2009
a(n) = A173921(A000051(n+1)). - Reinhard Zumkeller, Mar 04 2010
|
|
LINKS
|
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (3,-2).
|
|
FORMULA
|
a(n) = 2a(n-1) - 3 = A052548(n) + 1 = A000051(n) + 2 = A000079(n) + 3 = A000225(n) + 4 = A030101(A004119(n)) for n > 1.
G.f.: (4 - 7*x)/((1 - 2*x)*(1 - x)).
|
|
EXAMPLE
|
a(3) = 2^3 + 3 = 8 + 3 = 11.
a(4) = 2^4 + 3 = 16 + 3 = 19.
|
|
MATHEMATICA
|
LinearRecurrence[{3, -2}, {4, 5}, 40] (* Vincenzo Librandi, Jan 31 2012 *)
NestList[2 * # - 3 &, 4, 20] (* Zak Seidov, Mar 28 2015 *)
2^Range[0, 29] + 3 (* Alonso del Arte, Mar 28 2015 *)
|
|
PROG
|
(Sage) [gaussian_binomial(n, 1, 2)+4 for n in range(0, 32)] # Zerinvary Lajos, May 31 2009
(PARI) a(n)=2^n+3 \\ Charles R Greathouse IV, Jan 30 2012
(MAGMA) [2^n+3: n in [0..40]] // Vincenzo Librandi, Jan 31 2012
|
|
CROSSREFS
|
Primes in this sequence are A057733.
Sequence in context: A240118 A237133 A253584 * A242212 A129302 A216536
Adjacent sequences: A062706 A062707 A062708 * A062710 A062711 A062712
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Henry Bottomley, Jul 13 2001
|
|
STATUS
|
approved
|
|
|
|