login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A062708
Write 0,1,2,3,4,... in a triangular spiral; then a(n) is the sequence found by reading the terms along the line from 0 in the direction 0,2,...
12
0, 2, 13, 33, 62, 100, 147, 203, 268, 342, 425, 517, 618, 728, 847, 975, 1112, 1258, 1413, 1577, 1750, 1932, 2123, 2323, 2532, 2750, 2977, 3213, 3458, 3712, 3975, 4247, 4528, 4818, 5117, 5425, 5742, 6068, 6403, 6747, 7100, 7462, 7833, 8213, 8602, 9000
OFFSET
0,2
FORMULA
a(n) = n*(9*n-5)/2.
a(n) = 9*n + a(n-1) - 7 (with a(0)=0). - Vincenzo Librandi, Aug 07 2010
From Colin Barker, Jul 07 2012: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: x*(2+7*x)/(1-x)^3. (End)
a(n) = A218470(9n+1). - Philippe Deléham, Mar 27 2013
E.g.f.: x*(4 + 9*x)*exp(x)/2. - G. C. Greubel, Sep 02 2019
EXAMPLE
The spiral begins:
.
15
/ \
16 14
/ \
17 3 13
/ / \ \
18 4 2 12
/ / \ \
19 5 0---1 11
/ / \
20 6---7---8---9--10
.
From Vincenzo Librandi, Aug 07 2010: (Start)
a(1) = 9*1 + 0 - 7 = 2;
a(2) = 9*2 + 2 - 7 = 13;
a(3) = 9*3 + 13 - 7 = 33. (End)
MAPLE
seq(n*(9*n-5)/2, n=0..50); # G. C. Greubel, Sep 02 2019
MATHEMATICA
Table[n*(9*n-5)/2, {n, 0, 50}] (* G. C. Greubel, Sep 02 2019 *)
nxt[{n_, a_}]:={n+1, 9(n+1)+a-7}; NestList[nxt, {0, 0}, 50][[All, 2]] (* Harvey P. Dale, Apr 11 2022 *)
PROG
(PARI) a(n)=n*(9*n-5)/2 \\ Charles R Greathouse IV, Jun 17 2017
(Magma) [n*(9*n-5)/2: n in [0..50]]; // G. C. Greubel, Sep 02 2019
(Sage) [n*(9*n-5)/2 for n in (0..50)] # G. C. Greubel, Sep 02 2019
(GAP) List([0..50], n-> n*(9*n-5)/2); # G. C. Greubel, Sep 02 2019
CROSSREFS
Cf. A051682.
Cf. A218470.
Cf. numbers of the form n*(n*k-k+4)/2 listed in A226488 (this is case k=9).
Sequence in context: A084828 A100512 A051474 * A296293 A190816 A084910
KEYWORD
nonn,easy
AUTHOR
Floor van Lamoen, Jul 21 2001
STATUS
approved