Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #51 Aug 18 2024 03:17:13
%S 0,2,13,33,62,100,147,203,268,342,425,517,618,728,847,975,1112,1258,
%T 1413,1577,1750,1932,2123,2323,2532,2750,2977,3213,3458,3712,3975,
%U 4247,4528,4818,5117,5425,5742,6068,6403,6747,7100,7462,7833,8213,8602,9000
%N Write 0,1,2,3,4,... in a triangular spiral; then a(n) is the sequence found by reading the terms along the line from 0 in the direction 0,2,...
%H G. C. Greubel, <a href="/A062708/b062708.txt">Table of n, a(n) for n = 0..1000</a>
%H Milan Janjic, <a href="http://www.pmfbl.org/janjic/">Two Enumerative Functions</a> [broken link]
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1).
%F a(n) = n*(9*n-5)/2.
%F a(n) = 9*n + a(n-1) - 7 (with a(0)=0). - _Vincenzo Librandi_, Aug 07 2010
%F From _Colin Barker_, Jul 07 2012: (Start)
%F a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
%F G.f.: x*(2+7*x)/(1-x)^3. (End)
%F a(n) = A218470(9n+1). - _Philippe Deléham_, Mar 27 2013
%F E.g.f.: x*(4 + 9*x)*exp(x)/2. - _G. C. Greubel_, Sep 02 2019
%e The spiral begins:
%e .
%e 15
%e / \
%e 16 14
%e / \
%e 17 3 13
%e / / \ \
%e 18 4 2 12
%e / / \ \
%e 19 5 0---1 11
%e / / \
%e 20 6---7---8---9--10
%e .
%e From _Vincenzo Librandi_, Aug 07 2010: (Start)
%e a(1) = 9*1 + 0 - 7 = 2;
%e a(2) = 9*2 + 2 - 7 = 13;
%e a(3) = 9*3 + 13 - 7 = 33. (End)
%p seq(n*(9*n-5)/2, n=0..50); # _G. C. Greubel_, Sep 02 2019
%t Table[n*(9*n-5)/2, {n,0,50}] (* _G. C. Greubel_, Sep 02 2019 *)
%t nxt[{n_,a_}]:={n+1,9(n+1)+a-7}; NestList[nxt,{0,0},50][[All,2]] (* _Harvey P. Dale_, Apr 11 2022 *)
%o (PARI) a(n)=n*(9*n-5)/2 \\ _Charles R Greathouse IV_, Jun 17 2017
%o (Magma) [n*(9*n-5)/2: n in [0..50]]; // _G. C. Greubel_, Sep 02 2019
%o (Sage) [n*(9*n-5)/2 for n in (0..50)] # _G. C. Greubel_, Sep 02 2019
%o (GAP) List([0..50], n-> n*(9*n-5)/2); # _G. C. Greubel_, Sep 02 2019
%Y Cf. A051682.
%Y Cf. A218470.
%Y Cf. numbers of the form n*(n*k-k+4)/2 listed in A226488 (this is case k=9).
%K nonn,easy
%O 0,2
%A _Floor van Lamoen_, Jul 21 2001