The OEIS is supported by the many generous donors to the OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A104632 1/n times A104631(n), the coefficient of x^(2n+1) in the expansion of (1+x+x^2+x^3+x^4)^n. 2
 1, 2, 6, 20, 73, 281, 1125, 4635, 19525, 83710, 364070, 1602327, 7123041, 31937010, 144255802, 655804649, 2998354717, 13777825186, 63596593430, 294743653360, 1371017707245, 6398580086645, 29952930770185, 140604572777250, 661708404611603, 3121439743413256, 14756658303857332 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS This sequence may be viewed as a higher-order form of the Motzkin numbers, A001006, which are 1/n times the coefficient of x^(n+1) in the expansion of (1+x+x^2)^n. According to Superseeker, this sequence is the INVERT transform of A104184, which is related to Motzkin numbers also. See A104631 for additional comments. Alternatively, this sequence corresponds to the number of positive walks with n steps {-2,-1,0,1,2} starting at the origin, ending at altitude 1, and staying strictly above the x-axis. - David Nguyen, Dec 01 2016 LINKS C. Banderier, C. Krattenthaler, A. Krinik, D. Kruchinin, V. Kruchinin, D. Nguyen, and M. Wallner, Explicit formulas for enumeration of lattice paths: basketball and the kernel method, arXiv preprint arXiv:1609.06473 [math.CO], 2016. FORMULA a(n) = Sum_{i=0..(2*n+1)/5}((-1)^i*binomial(n,i)*binomial(3*n-5*i,n-1))/n. - Vladimir Kruchinin, Apr 06 2017 Conjecture: 2*n*(2*n+1)*(n-1)*a(n) -(n-1)*(19*n^2-19*n+2)*a(n-1) -5*(n-2)*(2*n^2-3*n-1)*a(n-2) +25*n*(n-2)*(n-3)*a(n-3)=0. - R. J. Mathar, Jul 23 2017 MATHEMATICA f=1; Table[f=Expand[f(x^4+x^3+x^2+x+1)]; Coefficient[f, x, 2n+1]/n, {n, 30}] a[ n_] := If[ n < 1, 0, Coefficient[ (1 + x + x^2 + x^3 + x^4)^n, x, 2 n + 1] / n]; (* Michael Somos, Dec 01 2016 *) PROG (PARI) a(n) = polcoeff((1+x+x^2+x^3+x^4)^n, 2*n+1)/n \\ Michel Marcus, Sep 24 2016 (Maxima) a(n):=sum((-1)^i*binomial(n, i)*binomial(3*n-5*i, n-1), i, 0, (2*n+1)/5)/n; /* Vladimir Kruchinin, Apr 06 2017 */ CROSSREFS Cf. A005717 (coefficient of x^(n+1) in the expansion of (1+x+x^2)^n). Sequence in context: A061396 A230823 A192497 * A194956 A150141 A150142 Adjacent sequences:  A104629 A104630 A104631 * A104633 A104634 A104635 KEYWORD easy,nonn AUTHOR T. D. Noe, Mar 17 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 26 00:47 EDT 2022. Contains 354073 sequences. (Running on oeis4.)