login
A104632
1/n times A104631(n), the coefficient of x^(2n+1) in the expansion of (1+x+x^2+x^3+x^4)^n.
2
1, 2, 6, 20, 73, 281, 1125, 4635, 19525, 83710, 364070, 1602327, 7123041, 31937010, 144255802, 655804649, 2998354717, 13777825186, 63596593430, 294743653360, 1371017707245, 6398580086645, 29952930770185, 140604572777250, 661708404611603, 3121439743413256, 14756658303857332
OFFSET
1,2
COMMENTS
This sequence may be viewed as a higher-order form of the Motzkin numbers, A001006, which are 1/n times the coefficient of x^(n+1) in the expansion of (1+x+x^2)^n. According to Superseeker, this sequence is the INVERT transform of A104184, which is related to Motzkin numbers also. See A104631 for additional comments.
Alternatively, this sequence corresponds to the number of positive walks with n steps {-2,-1,0,1,2} starting at the origin, ending at altitude 1, and staying strictly above the x-axis. - David Nguyen, Dec 01 2016
LINKS
C. Banderier, C. Krattenthaler, A. Krinik, D. Kruchinin, V. Kruchinin, D. Nguyen, and M. Wallner, Explicit formulas for enumeration of lattice paths: basketball and the kernel method, arXiv preprint arXiv:1609.06473 [math.CO], 2016.
FORMULA
a(n) = Sum_{i=0..(2*n+1)/5}((-1)^i*binomial(n,i)*binomial(3*n-5*i,n-1))/n. - Vladimir Kruchinin, Apr 06 2017
Conjecture: 2*n*(2*n+1)*(n-1)*a(n) -(n-1)*(19*n^2-19*n+2)*a(n-1) -5*(n-2)*(2*n^2-3*n-1)*a(n-2) +25*n*(n-2)*(n-3)*a(n-3)=0. - R. J. Mathar, Jul 23 2017
MATHEMATICA
f=1; Table[f=Expand[f(x^4+x^3+x^2+x+1)]; Coefficient[f, x, 2n+1]/n, {n, 30}]
a[ n_] := If[ n < 1, 0, Coefficient[ (1 + x + x^2 + x^3 + x^4)^n, x, 2 n + 1] / n]; (* Michael Somos, Dec 01 2016 *)
PROG
(PARI) a(n) = polcoeff((1+x+x^2+x^3+x^4)^n, 2*n+1)/n \\ Michel Marcus, Sep 24 2016
(Maxima)
a(n):=sum((-1)^i*binomial(n, i)*binomial(3*n-5*i, n-1), i, 0, (2*n+1)/5)/n; /* Vladimir Kruchinin, Apr 06 2017 */
CROSSREFS
Cf. A005717 (coefficient of x^(n+1) in the expansion of (1+x+x^2)^n).
Sequence in context: A061396 A230823 A192497 * A194956 A150141 A150142
KEYWORD
easy,nonn
AUTHOR
T. D. Noe, Mar 17 2005
STATUS
approved