OFFSET
0,6
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..254
Wikipedia, Topological space
EXAMPLE
Triangle begins:
1
0 1
0 1 2 1
0 1 6 9 6 6 0 1
0 1 14 43 60 72 54 54 20 24 0 12 0 0 0 1
Row n = 3 counts the following topologies:
{}{123} {}{1}{123} {}{1}{12}{123} {}{1}{2}{12}{123} {}{1}{2}{12}{13}{123}
{}{2}{123} {}{1}{13}{123} {}{1}{3}{13}{123} {}{1}{2}{12}{23}{123}
{}{3}{123} {}{1}{23}{123} {}{2}{3}{23}{123} {}{1}{3}{12}{13}{123}
{}{12}{123} {}{2}{12}{123} {}{1}{12}{13}{123} {}{1}{3}{13}{23}{123}
{}{13}{123} {}{2}{13}{123} {}{2}{12}{23}{123} {}{2}{3}{12}{23}{123}
{}{23}{123} {}{2}{23}{123} {}{3}{13}{23}{123} {}{2}{3}{13}{23}{123}
{}{3}{12}{123}
{}{3}{13}{123} {}{1}{2}{3}{12}{13}{23}{123}
{}{3}{23}{123}
MATHEMATICA
Table[Length[Select[Subsets[Subsets[Range[n]], {k}], MemberQ[#, {}]&&MemberQ[#, Range[n]]&&SubsetQ[#, Union[Union@@@Tuples[#, 2], Intersection@@@Tuples[#, 2]]]&]], {n, 0, 4}, {k, 2^n}]
KEYWORD
nonn,tabf,nice
AUTHOR
Gus Wiseman, Aug 01 2019
EXTENSIONS
Terms a(31) and beyond from Andrew Howroyd, Aug 10 2019
STATUS
approved