OFFSET
1,2
LINKS
Seiichi Manyama, Table of n, a(n) for n = 1..10000
Kevin Acres, David Broadhurst, Eta quotients and Rademacher sums, arXiv:1810.07478 [math.NT], 2018. See Table 1 p. 10.
FORMULA
Expansion of (c(q) / (3 * b(q)))^3 in powers of q where b(), c() are cubic AGM theta functions. - Michael Somos, Jun 16 2012
Euler transform of period 3 sequence [ 12, 12, 0, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = u^3 + v^3 - u*v - 24*u*v * (u + v) - 729*u^2*v^2.
G.f.: x * (Product_{k>0} (1 - x^(3*k)) / (1 - x^k))^12.
Convolution inverse of A030182. - Michael Somos, Jun 16 2012
G.f. is a period 1 Fourier series which satisfies f(-1 / (3 t)) = 3^-6 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A030182.
a(n) ~ exp(4*Pi*sqrt(n/3)) / (729 * sqrt(2) * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Sep 07 2015
a(1) = 1, a(n) = (12/(n-1))*Sum_{k=1..n-1} A046913(k)*a(n-k) for n > 1. - Seiichi Manyama, Apr 01 2017
EXAMPLE
G.f. = q + 12*q^2 + 90*q^3 + 508*q^4 + 2391*q^5 + 9828*q^6 + 36428*q^7 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ q (QPochhammer[ q^3] / QPochhammer[ q])^12, {q, 0, n}]; (* Michael Somos, Aug 09 2015 *)
nmax = 40; Rest[CoefficientList[Series[x * Product[((1 - x^(3*k)) / (1 - x^k))^12, {k, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Sep 07 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( (eta(x^3 + A) / eta(x + A))^12, n))};
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael Somos, Aug 09 2006
STATUS
approved