login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A121593
Expansion of (eta(q^7) / eta(q))^4 in powers of q.
3
1, 4, 14, 40, 105, 252, 574, 1236, 2564, 5124, 9948, 18788, 34685, 62664, 111132, 193672, 332325, 561996, 937958, 1546132, 2519825, 4062888, 6486008, 10257324, 16079389, 24996636, 38555216, 59025820, 89728900, 135486960, 203274344
OFFSET
1,2
COMMENTS
G.f. A(q) is denoted by tau(q) / 49 in Klein and Fricke 1890.
LINKS
Kevin Acres, David Broadhurst, Eta quotients and Rademacher sums, arXiv:1810.07478 [math.NT], 2018. See Table 1 p. 10.
F. Klein and R. Fricke, Vorlesungen über die Theorie der elliptischen Modulfunctionen, Teubner, Leipzig, 1890, Vol. 1, see p. 745, Eq. (3).
FORMULA
Euler transform of period 7 sequence [4, 4, 4, 4, 4, 4, 0, ...].
G.f.: x * (Product_{k>0} (1 - x^(7*k)) / (1 - x^k))^4.
G.f. A(q) satisfies 0 = f(A(q), A(q^2)) where f(u, v) = (u + v) * (u - v)^2 - u*v * (1 + 7*u) * (1 + 7*v).
G.f. is a period 1 Fourier series which satisfies f(-1 / (7 t)) = 7^-2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A030181. - Michael Somos, Jan 02 2015
G.f. A(q) satisfies j(q) = f(49 * A(q)) where f(x) := (x^2 + 13*x + 49) * (x^2 + 5*x + 1)^3 / x. - Michael Somos, Jan 02 2015
Convolution inverse of A030181. - Michael Somos, Jan 02 2015
a(n) ~ exp(4*Pi*sqrt(n/7)) / (49 * sqrt(2) * 7^(1/4) * n^(3/4)). - Vaclav Kotesovec, Sep 07 2015
a(1) = 1, a(n) = (4/(n-1))*Sum_{k=1..n-1} A113957(k)*a(n-k) for n > 1. - Seiichi Manyama, Apr 01 2017
EXAMPLE
G.f. = q + 4*q^2 + 14*q^3 + 40*q^4 + 105*q^5 + 252*q^6 + 574*q^7 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ q (QPochhammer[ q^7] / QPochhammer[ q])^4, {q, 0, n}]; (* Michael Somos, Jan 02 2015 *)
nmax = 40; Rest[CoefficientList[Series[x * Product[((1 - x^(7*k)) / (1 - x^k))^4, {k, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Sep 07 2015 *)
eta[q_]:=q^(1/6) QPochhammer[q]; a[n_]:=SeriesCoefficient[(eta[q^7] / eta[q])^4, {q, 0, n}]; Table[a[n], {n, 4, 35}] (* Vincenzo Librandi, Oct 18 2018 *)
PROG
(PARI) {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( (eta(x^7 + A) / eta(x + A))^4, n))};
CROSSREFS
Cf. A030181.
Sequence in context: A274327 A160463 A278680 * A160527 A023003 A001872
KEYWORD
nonn
AUTHOR
Michael Somos, Aug 09 2006
STATUS
approved