login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A121592
Expansion of (eta(q)eta(q^9)/eta(q^3)^2)^6 in powers of q.
2
1, -6, 9, 22, -102, 108, 221, -858, 810, 1476, -5262, 4572, 7802, -26112, 21519, 34918, -111870, 88452, 138332, -427980, 327852, 497592, -1497666, 1117692, 1655719, -4869876, 3556791, 5161808, -14891262, 10677096, 15226658, -43198938, 30485268
OFFSET
1,2
LINKS
FORMULA
Euler transform of period 9 sequence [ -6, -6, 6, -6, -6, 6, -6, -6, 0, ...].
G.f. A(x) satisfies 0=f(A(x), A(x^2)) where f(u, v)=u^3+v^3-u*v+12*u*v*(u+v)+27*u^2*v^2.
G.f.: x*(Product_{k>0} (1-x^k)(1-x^(9k))/(1-x^(3k))^2)^6.
MATHEMATICA
QP = QPochhammer; s = (QP[q]*(QP[q^9]/QP[q^3]^2))^6 + O[q]^40; CoefficientList[s, q] (* Jean-François Alcover, Nov 25 2015 *)
PROG
(PARI) {a(n)=local(A); if(n<1, 0, n--; A=x*O(x^n); polcoeff( (eta(x^5+A)/eta(x+A))^6, n))}
CROSSREFS
Cf. A131985.
Sequence in context: A006132 A033705 A033704 * A295726 A034718 A215528
KEYWORD
sign
AUTHOR
Michael Somos, Aug 09 2006
STATUS
approved