|
|
A006132
|
|
Related to representations as sums of Fibonacci numbers.
(Formerly M4079)
|
|
1
|
|
|
1, 6, 9, 22, 40, 43, 48, 56, 61, 64, 111, 145, 150, 153, 166, 255, 273, 276, 281, 289, 294, 297, 310, 315, 318, 323, 328, 331, 336, 344, 378, 383, 386, 399, 417, 420, 425, 433, 438, 441, 488, 721, 755, 760, 763, 776, 865, 988, 993, 996, 1009, 1027, 1030, 1035
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
Numbers such that A003231(n) = A003234(n), see Table 1 p. 357 in Carlitz link. - Michel Marcus, Feb 02 2014
|
|
REFERENCES
|
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
|
|
LINKS
|
Table of n, a(n) for n=1..54.
L. Carlitz, R. Scoville and T. Vaughan, Some arithmetic functions related to Fibonacci numbers, Fib. Quart., 11 (1973), 337-386.
|
|
PROG
|
(PARI) A001950(n) = floor(n*(sqrt(5)+3)/2); \\ b
A003231(n) = floor(n*(sqrt(5)+5)/2); \\ c
iss(n) = A003231(A001950(n)) == A001950(A003231(n)) - 1;
lista(nn) = {v003231 = vector(nn, i, floor(i*(sqrt(5)+5)/2)); v003234 = select(n->iss(n), vector(5*nn, i, i)); for (n=1, nn, if (v003231[n] == v003234[n], print1(n, ", ")); ); } \\ Michel Marcus, Feb 02 2014
|
|
CROSSREFS
|
Sequence in context: A268665 A043883 A112393 * A033705 A033704 A121592
Adjacent sequences: A006129 A006130 A006131 * A006133 A006134 A006135
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
N. J. A. Sloane.
|
|
EXTENSIONS
|
More terms from Michel Marcus, Feb 02 2014
|
|
STATUS
|
approved
|
|
|
|