OFFSET
1,1
COMMENTS
See 3.3 p. 344 in Carlitz link. - Michel Marcus, Feb 02 2014
This is the function named s in [Carlitz]. - Eric M. Schmidt, Aug 14 2014
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
L. Carlitz, R. Scoville and T. Vaughan, Some arithmetic functions related to Fibonacci numbers, Fib. Quart., 11 (1973), 337-386.
MAPLE
MATHEMATICA
a3[n_] := Floor[n (Sqrt[5] + 3)/2];
a5[n_] := Floor[n (Sqrt[5] + 5)/2];
Select[Range[300], a5[a3[#]] == a3[a5[#]]-1&] (* Jean-François Alcover, Jul 31 2018 *)
PROG
(PARI) A001950(n) = floor(n*(sqrt(5)+3)/2);
A003231(n) = floor(n*(sqrt(5)+5)/2);
(Haskell)
a003234 n = a003234_list !! (n-1)
a003234_list = [x | x <- [1..],
a003231 (a001950 x) == a001950 (a003231 x) - 1]
-- Reinhard Zumkeller, Oct 03 2014
(Python)
from math import isqrt
from itertools import count, islice
def A003234_gen(startvalue=1): # generator of terms >= startvalue
return filter(lambda n:((m:=(n+isqrt(5*n**2)>>1)+n)+isqrt(5*m**2)>>1)+(m<<1)+1==((k:=(n+isqrt(5*n**2)>>1)+(n<<1))+isqrt(5*k**2)>>1)+k, count(max(1, startvalue)))
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from Michel Marcus, Feb 02 2014
Definition from Michel Marcus moved from comment to name by Eric M. Schmidt, Aug 17 2014
STATUS
approved