login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A003234
Numbers k such that A003231(A001950(k)) = A001950(A003231(k)) - 1.
(Formerly M2714)
15
3, 8, 11, 16, 19, 21, 24, 29, 32, 37, 42, 45, 50, 53, 55, 58, 63, 66, 71, 74, 76, 79, 84, 87, 92, 97, 100, 105, 108, 110, 113, 118, 121, 126, 129, 131, 134, 139, 142, 144, 147, 152, 155, 160, 163, 165, 168, 173, 176, 181, 186, 189, 194, 197, 199, 202, 207
OFFSET
1,1
COMMENTS
See 3.3 p. 344 in Carlitz link. - Michel Marcus, Feb 02 2014
This is the function named s in [Carlitz]. - Eric M. Schmidt, Aug 14 2014
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
L. Carlitz, R. Scoville and T. Vaughan, Some arithmetic functions related to Fibonacci numbers, Fib. Quart., 11 (1973), 337-386.
MAPLE
A003234 := proc(n)
option remember;
if n =1 then
3;
else
for a from procname(n-1)+1 do
if A003231(A001950(a)) = A001950(A003231(a))-1 then
return a;
end if;
end do:
end if;
end proc:
seq(A003234(n), n=1..80) ; # R. J. Mathar, Jul 16 2024
MATHEMATICA
a3[n_] := Floor[n (Sqrt[5] + 3)/2];
a5[n_] := Floor[n (Sqrt[5] + 5)/2];
Select[Range[300], a5[a3[#]] == a3[a5[#]]-1&] (* Jean-François Alcover, Jul 31 2018 *)
PROG
(PARI) A001950(n) = floor(n*(sqrt(5)+3)/2);
A003231(n) = floor(n*(sqrt(5)+5)/2);
isok(n) = A003231(A001950(n)) == A001950(A003231(n)) - 1; \\ Michel Marcus, Feb 02 2014
(Haskell)
a003234 n = a003234_list !! (n-1)
a003234_list = [x | x <- [1..],
a003231 (a001950 x) == a001950 (a003231 x) - 1]
-- Reinhard Zumkeller, Oct 03 2014
(Python)
from math import isqrt
from itertools import count, islice
def A003234_gen(startvalue=1): # generator of terms >= startvalue
return filter(lambda n:((m:=(n+isqrt(5*n**2)>>1)+n)+isqrt(5*m**2)>>1)+(m<<1)+1==((k:=(n+isqrt(5*n**2)>>1)+(n<<1))+isqrt(5*k**2)>>1)+k, count(max(1, startvalue)))
A003234_list = list(islice(A003234_gen(), 30)) # Chai Wah Wu, Sep 02 2022
CROSSREFS
Sequence in context: A145837 A111132 A188473 * A047470 A184401 A190251
KEYWORD
nonn
EXTENSIONS
More terms from Michel Marcus, Feb 02 2014
Definition from Michel Marcus moved from comment to name by Eric M. Schmidt, Aug 17 2014
STATUS
approved