Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M2714 #40 Jul 16 2024 13:06:57
%S 3,8,11,16,19,21,24,29,32,37,42,45,50,53,55,58,63,66,71,74,76,79,84,
%T 87,92,97,100,105,108,110,113,118,121,126,129,131,134,139,142,144,147,
%U 152,155,160,163,165,168,173,176,181,186,189,194,197,199,202,207
%N Numbers k such that A003231(A001950(k)) = A001950(A003231(k)) - 1.
%C See 3.3 p. 344 in Carlitz link. - _Michel Marcus_, Feb 02 2014
%C This is the function named s in [Carlitz]. - _Eric M. Schmidt_, Aug 14 2014
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H L. Carlitz, R. Scoville and T. Vaughan, <a href="http://www.fq.math.ca/Scanned/11-4/carlitz.pdf">Some arithmetic functions related to Fibonacci numbers</a>, Fib. Quart., 11 (1973), 337-386.
%p A003234 := proc(n)
%p option remember;
%p if n =1 then
%p 3;
%p else
%p for a from procname(n-1)+1 do
%p if A003231(A001950(a)) = A001950(A003231(a))-1 then
%p return a;
%p end if;
%p end do:
%p end if;
%p end proc:
%p seq(A003234(n),n=1..80) ; # _R. J. Mathar_, Jul 16 2024
%t a3[n_] := Floor[n (Sqrt[5] + 3)/2];
%t a5[n_] := Floor[n (Sqrt[5] + 5)/2];
%t Select[Range[300], a5[a3[#]] == a3[a5[#]]-1&] (* _Jean-François Alcover_, Jul 31 2018 *)
%o (PARI) A001950(n) = floor(n*(sqrt(5)+3)/2);
%o A003231(n) = floor(n*(sqrt(5)+5)/2);
%o isok(n) = A003231(A001950(n)) == A001950(A003231(n)) - 1; \\ _Michel Marcus_, Feb 02 2014
%o (Haskell)
%o a003234 n = a003234_list !! (n-1)
%o a003234_list = [x | x <- [1..],
%o a003231 (a001950 x) == a001950 (a003231 x) - 1]
%o -- _Reinhard Zumkeller_, Oct 03 2014
%o (Python)
%o from math import isqrt
%o from itertools import count, islice
%o def A003234_gen(startvalue=1): # generator of terms >= startvalue
%o return filter(lambda n:((m:=(n+isqrt(5*n**2)>>1)+n)+isqrt(5*m**2)>>1)+(m<<1)+1==((k:=(n+isqrt(5*n**2)>>1)+(n<<1))+isqrt(5*k**2)>>1)+k,count(max(1,startvalue)))
%o A003234_list = list(islice(A003234_gen(),30)) # _Chai Wah Wu_, Sep 02 2022
%Y Cf. A001950, A003231.
%K nonn
%O 1,1
%A _N. J. A. Sloane_
%E More terms from _Michel Marcus_, Feb 02 2014
%E Definition from _Michel Marcus_ moved from comment to name by _Eric M. Schmidt_, Aug 17 2014