login
A111132
a(n+1) = a(n) + (a(n) - a(n-1) + a(n) mod 10) mod 10 with a(0)=0 and a(1)=1.
0
1, 3, 8, 11, 15, 24, 27, 27, 34, 35, 41, 48, 53, 61, 70, 79, 87, 92, 99, 105, 106, 113, 113, 116, 125, 129, 132, 137, 139, 140, 141, 143, 148, 151, 155, 164, 167, 167, 174, 175, 181, 188, 193, 201, 210, 219, 227, 232, 239, 245, 246, 253, 253, 256, 265, 269, 272
OFFSET
0,2
COMMENTS
Similar to A111072 but moving right by a(n).
EXAMPLE
Write the digit string 0123456789 and repeat it infinitely many times. Then, starting from the first "1" digit on the left side, move right by one digit (to the digit "2"), then take the sum 1+2=3. Now move right by 3 digits (the result of the previous sum). We are at the digit "5"; then make the sum 3+5=8. Repeating the process we get 1, 3, 8, 11, 15, 24, 27, 27, 34, ....
MAPLE
ANM:=proc(N) global anplus1, anminus1; local an, i, anpolus; anminus1:=0; an:=1; print (an); for i from 2 by 1 to N do anplus1:=an+((an-anminus1+ an mod 10) mod 10); print(anplus1); anminus1:=an; an:=anplus1; od; end: ANM(100);
MATHEMATICA
nxt[{a_, b_}]:={b, b+Mod[b-a+Mod[b, 10], 10]}; NestList[nxt, {0, 1}, 60][[All, 1]] (* Harvey P. Dale, Nov 22 2018 *)
CROSSREFS
Sequence in context: A310282 A081858 A145837 * A188473 A003234 A047470
KEYWORD
easy,nonn
AUTHOR
Giorgio Balzarotti and Paolo P. Lava, Oct 17 2005, corrected Sep 29 2006
STATUS
approved