login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A003233
Numbers k such that A003231(A001950(k)) = A001950(A003231(k)).
(Formerly M0944)
4
1, 2, 4, 5, 6, 7, 9, 10, 12, 13, 14, 15, 17, 18, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 34, 35, 36, 38, 39, 40, 41, 43, 44, 46, 47, 48, 49, 51, 52, 54, 56, 57, 59, 60, 61, 62, 64, 65, 67, 68, 69, 70, 72, 73, 75, 77, 78, 80, 81, 82, 83, 85, 86, 88, 89, 90, 91
OFFSET
1,2
COMMENTS
See 3.3 p. 344 in Carlitz link. - Michel Marcus, Feb 02 2014
This is the function named r in [Carlitz]. - Eric M. Schmidt, Aug 14 2014
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
L. Carlitz, R. Scoville and T. Vaughan, Some arithmetic functions related to Fibonacci numbers, Fib. Quart., 11 (1973), 337-386.
MATHEMATICA
a3221[n_] := Floor[n(5 + Sqrt[5])/2];
a1950[n_] := Floor[n(1 + Sqrt[5])^2/4];
Select[Range[100], a3221[a1950[#]] == a1950[a3221[#]]&] (* Jean-François Alcover, Aug 04 2018 *)
PROG
(PARI) A001950(n) = floor(n*(sqrt(5)+3)/2);
A003231(n) = floor(n*(sqrt(5)+5)/2);
lista(nn) = { for(n=1, nn, if (A003231(A001950(n)) == A001950(A003231(n)), print1(n, ", "))); } \\ Michel Marcus, Feb 02 2014
(Haskell)
a003233 n = a003233_list !! (n-1)
a003233_list = [x | x <- [1..],
a003231 (a001950 x) == a001950 (a003231 x)]
-- Reinhard Zumkeller, Oct 03 2014
(Python)
from math import isqrt
from itertools import count, islice
def A003233_gen(startvalue=1): # generator of terms >= startvalue
return filter(lambda n:((m:=(n+isqrt(5*n**2)>>1)+n)+isqrt(5*m**2)>>1)+(m<<1)==((k:=(n+isqrt(5*n**2)>>1)+(n<<1))+isqrt(5*k**2)>>1)+k, count(max(1, startvalue)))
A003233_list = list(islice(A003233_gen(), 30)) # Chai Wah Wu, Sep 02 2022
CROSSREFS
KEYWORD
nonn,changed
EXTENSIONS
More terms from Michel Marcus, Feb 02 2014
Definition from Michel Marcus moved from comment to name by Eric M. Schmidt, Aug 17 2014
STATUS
approved