login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A121586
Number of columns in all deco polyominoes of height n. A deco polyomino is a directed column-convex polyomino in which the height, measured along the diagonal, is attained only in the last column.
4
1, 1, 3, 13, 70, 446, 3276, 27252, 253296, 2602224, 29288160, 358457760, 4740577920, 67375532160, 1024208720640, 16583626886400, 284953145702400, 5178968115148800, 99268112350310400, 2001336861359001600, 42337994134947840000, 937755916997437440000
OFFSET
0,3
COMMENTS
a(n) is also the largest entry in the cycle containing 1, summed over all permutations of {1,2,...,n}. Example: a(3) = 13 because the permutations (1)(2)(3), (1)(23), (12)(3), (13)(2), (123), (132), written in cycle notation, yield 1+1+2+3+3+3=13. - Emeric Deutsch, Nov 10 2008
LINKS
E. Barcucci, A. Del Lungo and R. Pinzani, "Deco" polyominoes, permutations and random generation, Theoretical Computer Science, 159, 1996, 29-42.
FORMULA
a(n) = (n+1)! - |s(n+1,2)|, where s(n,k) are the signed Stirling numbers of the first kind (A008275).
Recurrence relation: a(n) = n*a(n-1) + (n-1)!*(n-1); (see the Barcucci et al. reference, p. 34).
a(n) = Sum_{k=1..n} k*A094638(n,k).
From Emeric Deutsch, Nov 10 2008: (Start)
a(n) = (n-1)!*(n^2 + n - 1 - n*H(n-1)) for n >= 1, where H(j) = 1/1+1/2+...+1/j.
a(n) = Sum_{k=1..n} k*A145888(n,k) for n >= 1. (End)
From Gary Detlefs, Sep 12 2010: (Start)
a(n) = n!*((n+1) - h(n)), where h(n) = Sum_{k=1..n} 1/k.
a(n) = (n+1)! - A000254(n). (End)
E.g.f.: (1 - (x - 1)*log(1 - x))/(x - 1)^2. - Benedict W. J. Irwin, Sep 27 2016
a(n) = Sum_{k=0..n*(n-1)/2} (k+1) * A129177(n,k). - Alois P. Heinz, May 04 2023
EXAMPLE
a(2)=3 because the deco polyominoes of height 2 are the vertical and horizontal dominoes, having, respectively, 1 and 2 columns.
MAPLE
a[0] := 1; a[1] := 1: for n from 2 to 22 do a[n] := n*a[n-1] + (n-1)!*(n-1) od:
seq(a[n], n = 0..22);
# Second program:
egf := (1 - (x - 1)*log(1 - x))/(x - 1)^2: ser := series(egf, x, 20):
seq(n!*coeff(ser, x, n), n = 0..19); # Peter Luschny, Dec 09 2021
MATHEMATICA
Join[{1}, Table[CoefficientList[Series[((x-1)Log[1-x]-x-1)/(x-1)^3, {x, 0, 20}], x][[n]] (n-1)!, {n, 1, 20}]] (* Benedict W. J. Irwin, Sep 27 2016 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Aug 14 2006
EXTENSIONS
a(0) = 1 prepended by Peter Luschny, Dec 09 2021
STATUS
approved