login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A131986
Expansion of (eta(q) / eta(q^9))^3 in powers of q.
4
1, -3, 0, 5, 0, 0, -7, 0, 0, 3, 0, 0, 15, 0, 0, -32, 0, 0, 9, 0, 0, 58, 0, 0, -96, 0, 0, 22, 0, 0, 149, 0, 0, -253, 0, 0, 68, 0, 0, 372, 0, 0, -599, 0, 0, 140, 0, 0, 826, 0, 0, -1317, 0, 0, 317, 0, 0, 1768, 0, 0, -2735, 0, 0, 632, 0, 0, 3526, 0, 0, -5434, 0, 0
OFFSET
-1,2
COMMENTS
Number 4 of the 15 generalized eta-quotients listed in Table I of Yang 2004. - Michael Somos, Jul 21 2014
A generator (Hauptmodul) of the function field associated with congruence subgroup Gamma_0(9). [Yang 2004] - Michael Somos, Jul 21 2014
LINKS
Y. Yang, Transformation formulas for generalized Dedekind eta functions, Bull. London Math. Soc. 36 (2004), no. 5, 671-682. See p. 679, Table 1.
FORMULA
Euler transform of period 9 sequence [ -3, -3, -3, -3, -3, -3, -3, -3, 0, ...].
G.f. A(q) satisfies 0 = f(A(q), A(q^2)) where f(u, v) = (u + v)^3 - u*v * (27 + 9*(u+v) + u*v).
G.f. A(q) satisfies 0 = f(A(q), A(q^2), A(q^4)) where f(u, v, w) = u^2 + w^2 + u*w - v^2*(u+w) - 6*v^2 - 6*v*(u+w) - 27*v.
G.f. is a period 1 Fourier series which satisfies f(-1 / (9 t)) = 27 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A121589.
a(3*n + 1) = 0. a(3*n) = 0 unless n=0. a(3*n - 1) = A058091(n).
G.f.: (1/x) * (Product_{k>0} (1 - x^k) / (1 - x^(9*k)))^3.
Convolution inverse of A121589. - Michael Somos, Jul 21 2014
Convolution cube of A062246. - Michael Somos, Nov 03 2015
a(-1) = 1, a(n) = -(3/(n+1))*Sum_{k=1..n+1} A116607(k)*a(n-k) for n > -1. - Seiichi Manyama, Mar 29 2017
G.f. A(q) satisfies 0 = f(A(q), A(q^3)) where f(u, v) = (27 + 9*u + u^2) * (27 + 9*v + v^2) * u - v^3. - Michael Somos, May 13 2021
EXAMPLE
G.f. = 1/q - 3 + 5*q^2 - 7*q^5 + 3*q^8 + 15*q^11 - 32*q^14 + 9*q^17 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ 1/q (QPochhammer[ q] / QPochhammer[ q^9]))^3, {q, 0, n}]; (* Michael Somos, Jul 21 2014 *)
PROG
(PARI) {a(n) = my(A); if( n<-1, 0, n++; A = x * O(x^n); polcoeff( (eta(x + A) / eta(x^9 + A))^3, n))};
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Aug 04 2007
STATUS
approved