login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A062246
McKay-Thompson series of class 27c for the Monster group.
5
1, -1, -1, 0, 0, 1, 0, 1, 0, 1, -1, -1, -1, 0, 1, -1, 1, 0, 2, -2, -2, -1, 1, 2, -1, 2, 1, 3, -3, -3, -2, 1, 3, -2, 3, 0, 5, -5, -5, -3, 1, 5, -3, 5, 1, 7, -7, -7, -5, 2, 7, -4, 7, 1, 11, -11, -11, -6, 3, 11, -6, 11, 2, 15, -15, -15, -10, 4, 15, -9, 14, 2, 22, -22, -22, -13, 6, 21, -12, 21, 4, 30, -30, -30, -19, 8, 29, -17, 28, 4, 42
OFFSET
0,19
LINKS
D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).
J. McKay and A. Sebbar, Fuchsian groups, automorphic functions and Schwarzians, Math. Ann., 318 (2000), 255-275.
FORMULA
Expansion of q^(1/3) * eta(q) / eta(q^9) in powers of q.
Euler transform of period 9 sequence [ -1, -1, -1, -1, -1, -1, -1, -1, 0, ...].
a(n) = (-1)^n * A062245(n).
a(n) = -(1/n)*Sum_{k=1..n} A116607(k)*a(n-k), a(0) = 1. - Seiichi Manyama, Mar 25 2017
EXAMPLE
1 - x - x^2 + x^5 + x^7 + x^9 - x^10 - x^11 - x^12 + x^14 - x^15 + x^16 + ...
T27c = 1/q - q^2 - q^5 + q^14 + q^20 + q^26 - q^29 - q^32 - q^35 + q^41 - ...
MATHEMATICA
QP = QPochhammer; s = QP[q]/QP[q^9] + O[q]^90; CoefficientList[s, q] (* Jean-François Alcover, Nov 12 2015 *)
PROG
(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) / eta(x^9 + A), n))} /* Michael Somos, Jun 26 2004 */
CROSSREFS
Sequence in context: A327342 A297828 A062245 * A034095 A037811 A091237
KEYWORD
sign
AUTHOR
N. J. A. Sloane, Jul 01 2001
EXTENSIONS
Additional comments from Michael Somos, Jun 28 2004
STATUS
approved