login
A062249
a(n) = n + d(n), where d(n) = number of divisors of n, cf. A000005.
17
2, 4, 5, 7, 7, 10, 9, 12, 12, 14, 13, 18, 15, 18, 19, 21, 19, 24, 21, 26, 25, 26, 25, 32, 28, 30, 31, 34, 31, 38, 33, 38, 37, 38, 39, 45, 39, 42, 43, 48, 43, 50, 45, 50, 51, 50, 49, 58, 52, 56, 55, 58, 55, 62, 59, 64, 61, 62, 61, 72, 63, 66, 69, 71, 69, 74, 69, 74, 73, 78, 73
OFFSET
1,1
COMMENTS
Number of cyclic subgroups of dihedral group with 2n elements.
a(n) is the n-th smallest number not a divisor of n. - J. Lowell, Apr 06 2008
LINKS
FORMULA
a(n) = n + A000005(n). - Omar E. Pol, Dec 12 2008
From Ilya Gutkovskiy, Apr 12 2017: (Start)
G.f.: x/(1 - x)^2 + Sum_{k>=1} x^k/(1 - x^k).
Dirichlet g.f.: zeta(s)^2 + zeta(s-1). (End)
MAPLE
with(numtheory):seq(n+tau(n), n=1..71) ; # Zerinvary Lajos, Jun 04 2008
MATHEMATICA
Table[n + DivisorSigma[0, n], {n, 100}] (* Indranil Ghosh, Apr 12 2017 *)
PROG
(PARI) a(n) = n + numdiv(n) \\ Harry J. Smith, Aug 03 2009
(Haskell)
a062249 n = a000005 n + n -- Reinhard Zumkeller, Mar 29 2014
(Python)
from sympy.ntheory import divisor_count
[n + divisor_count(n) for n in range(101)] # Indranil Ghosh, Apr 12 2017
CROSSREFS
Cf. A064491 (iteration, start=1).
Sequence in context: A329531 A187325 A112233 * A081404 A255873 A141425
KEYWORD
nonn
AUTHOR
Ahmed Fares (ahmedfares(AT)my-deja.com), Jul 01 2001
EXTENSIONS
Formula and more terms from Vladeta Jovovic, Jul 03 2001
STATUS
approved