login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A062251
Take minimal prime q such that n(q+1)-1 is prime (A060324), that is, the smallest prime q so that n = (p+1)/(q+1) with p prime; sequence gives values of p.
8
2, 5, 11, 11, 19, 17, 41, 23, 53, 29, 43, 47, 103, 41, 59, 47, 67, 53, 113, 59, 83, 131, 137, 71, 149, 103, 107, 83, 173, 89, 433, 127, 131, 101, 139, 107, 443, 113, 233, 239, 163, 167, 257, 131, 179, 137, 281, 191, 293, 149, 1019, 311, 211, 431, 439, 167, 227
OFFSET
1,1
COMMENTS
A conjecture of Schinzel, if true, would imply that such a p always exists.
LINKS
Matthew M. Conroy, A sequence related to a conjecture of Schinzel, J. Integ. Seqs. Vol. 4 (2001), #01.1.7.
A. Schinzel and W. Sierpiński, Sur certaines hypothèses concernant les nombres premiers, Acta Arithmetica 4 (1958), 185-208; erratum 5 (1958) p. 259.
FORMULA
a(n) = (A060324(n) + 1) * n - 1. - Reinhard Zumkeller, Aug 28 2014
EXAMPLE
1 = (2+1)/(2+1), 2 = (5+1)/(2+1), 3 = (11+1)/(3+1), 4 = (11+1)/(2+1), ...
MAPLE
a:= proc(n) local q;
q:= 2;
while not isprime(n*(q+1)-1) do
q:= nextprime(q);
od; n*(q+1)-1
end:
seq(a(n), n=1..300);
MATHEMATICA
a[n_] := (q = 2; While[ ! PrimeQ[n*(q+1)-1], q = NextPrime[q]]; n*(q+1)-1); Table[a[n], {n, 1, 57}] (* Jean-François Alcover, Feb 17 2012, after Maple *)
PROG
(Haskell)
a062251 n = (a060324 n + 1) * n - 1 -- Reinhard Zumkeller, Aug 28 2014
CROSSREFS
Cf. A060424. Values of q are given in A060324.
Sequence in context: A300677 A079008 A144573 * A091114 A155767 A079782
KEYWORD
nonn,nice,easy
AUTHOR
N. J. A. Sloane, Jul 01 2001
EXTENSIONS
More terms from Vladeta Jovovic, Jul 02 2001
STATUS
approved