The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A062248 Expansion of a Schwarzian ({f_{27|3}, tau} / (4*Pi)^2) in powers of q^3. 2
 1, -48, -216, 1536, -1560, -3024, 13824, -8736, -14040, 41712, -27216, -31968, 112128, -51072, -74304, 193536, -113880, -117936, 375408, -165984, -220752, 528384, -287712, -292032, 898560, -375024, -474768, 1126464, -598848, -585360, 1741824, -722400, -898776 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS The q-series f_{27|3} is the g.f. for A062246. This is given on page 274 of McKay and Sebbar along with equation (8.2) which gives an expression for the g.f. A(q) of this sequence, but the left side is A(q^3) and the right side is A(q). - Michael Somos, Aug 12 2014 Ramanujan theta function: f(-q) (see A010815). Ramanujan Lambert series: Q(q) = E_4(q) (see A004009). Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882). LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 J. McKay and A. Sebbar, Fuchsian groups, automorphic functions and Schwarzians, Math. Ann., 318 (2000), 255-275. FORMULA Expansion of Q(q^3) - 48 * q * f(-q^3)^8 - 216 * q^2 * (f(-q) * f(-q)^9)^6 / f(-q^3)^4 in powers of q where Q(), f() are Ramanujan q-series. - Michael Somos, Aug 12 2014 Expansion of (a(q)^4 - 18 * a(q)^3*a(q^3) + 60 * a(q)^2*a(q^3)^2 - 54 * a(q)*a(q^3)^3 + 9 * a(q^3)^4) / -2 where a() is a cubic AGM theta function. - Michael Somos, Aug 12 2014 Expansion of b(q)^4 - 12 * b(q)^3*c(q^3) - 66 * b(q)^2*c(q^3)^2 - 36 * b(q)*c(q^3)^3 + 9 * c(q^3)^4 in powers of q where b(), c() are cubic AGM theta functions. - Michael Somos, Aug 12 2014 Expansion of E_4(q^3) - 48 * eta(q^3)^8 - 216*(eta(q) * eta(q^9)^6 / eta(q^3)^4 in powers of q. [McKay and Sebbar, equation (8.2)] - Michael Somos, Aug 12 2014 G.f. is a period 1 Fourier series which satisfies f(-1 / (9 t)) = 81 (t/i)^4 f(t) where q = exp(2 Pi i t). a(3*n) = A004009(n) -216 * A242042(3*n). a(3*n + 1) = -48 * A000731(n) -216 * A242042(3*n + 1). a(3*n + 2) = -216 * A242042(3*n + 2). - Michael Somos, Aug 12 2014 EXAMPLE G.f. = 1 - 48*x - 216*x^2 + 1536*x^3 - 1560*x^4 - 3024*x^5 + 13824*x^6 + ... G.f. = 1 - 48*q^3 - 216*q^6 + 1536*q^9 - 1560*q^12 - 3024*q^15 + 13824*q^18 + ... MATHEMATICA QP = QPochhammer; A = x*O[x]^40; A1 = QP[x + A]^3; A3 = QP[x^3 + A]^4; A9 = x*QP[x^9 + A]^3; s = ((A1 + 3*A9)*(A1 + 9*A9)*(A1^2 + 27*A9^2) - 48*x*A3^3 - 216*(A1*A9)^2)/A3; CoefficientList[s, x] (* Jean-François Alcover, Nov 14 2015, adapted from Michael Somos's PARI script *) eta[q_] := q^(1/24)*QPochhammer[q]; E4[q] := 1; E4[q_] := 1 + 240 *Sum[k^3* q^k/(1 - q^k), {k, 1, 500}]; CoefficientList[Series[E4[q^3] - 48*eta[q^3]^8 - 216*(eta[q]*eta[q^9])^6/eta[q^3]^4, {q, 0, 50}], q] (* G. C. Greubel, May 01 2018 *) PROG (PARI) {a(n) = local(A, A1, A3, A9); if( n<0, 0, A = x * O(x^n); A1 = eta(x + A)^3; A3 = eta(x^3 + A)^4; A9 = x * eta(x^9 + A)^3; polcoeff( ((A1 + 3*A9) * (A1 + 9*A9) * (A1^2 + 27*A9^2) - 48*x*A3^3 - 216*(A1*A9)^2) / A3, n))}; /* Michael Somos, Aug 12 2014 */ (Magma) A := Basis( ModularForms( Gamma0(9), 8/2), 30); A[1] - 48*A[2] - 216*A[3] + 1536*A[4] - 1560*A[5]; /* Michael Somos, Aug 12 2014 */ CROSSREFS Cf. A000731, A004009, A062246, A242042. Sequence in context: A260062 A364922 A235759 * A100146 A235542 A269014 Adjacent sequences: A062245 A062246 A062247 * A062249 A062250 A062251 KEYWORD sign AUTHOR N. J. A. Sloane, Jul 01 2001 EXTENSIONS More terms from John McKay (mckay(AT)cs.concordia.ca), Apr 18 2004 More terms from Michael Somos, Aug 12 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 15 13:24 EDT 2024. Contains 375173 sequences. (Running on oeis4.)