login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

McKay-Thompson series of class 27c for the Monster group.
5

%I #27 Mar 25 2017 11:22:06

%S 1,-1,-1,0,0,1,0,1,0,1,-1,-1,-1,0,1,-1,1,0,2,-2,-2,-1,1,2,-1,2,1,3,-3,

%T -3,-2,1,3,-2,3,0,5,-5,-5,-3,1,5,-3,5,1,7,-7,-7,-5,2,7,-4,7,1,11,-11,

%U -11,-6,3,11,-6,11,2,15,-15,-15,-10,4,15,-9,14,2,22,-22,-22,-13,6,21,-12,21,4,30,-30,-30,-19,8,29,-17,28,4,42

%N McKay-Thompson series of class 27c for the Monster group.

%H Seiichi Manyama, <a href="/A062246/b062246.txt">Table of n, a(n) for n = 0..10000</a>

%H D. Ford, J. McKay and S. P. Norton, <a href="http://dx.doi.org/10.1080/00927879408825127">More on replicable functions</a>, Commun. Algebra 22, No. 13, 5175-5193 (1994).

%H J. McKay and A. Sebbar, <a href="http://dx.doi.org/10.1007/s002080000116">Fuchsian groups, automorphic functions and Schwarzians</a>, Math. Ann., 318 (2000), 255-275.

%H <a href="/index/Mat#McKay_Thompson">Index entries for McKay-Thompson series for Monster simple group</a>

%F Expansion of q^(1/3) * eta(q) / eta(q^9) in powers of q.

%F Euler transform of period 9 sequence [ -1, -1, -1, -1, -1, -1, -1, -1, 0, ...].

%F a(n) = (-1)^n * A062245(n).

%F a(n) = -(1/n)*Sum_{k=1..n} A116607(k)*a(n-k), a(0) = 1. - _Seiichi Manyama_, Mar 25 2017

%e 1 - x - x^2 + x^5 + x^7 + x^9 - x^10 - x^11 - x^12 + x^14 - x^15 + x^16 + ...

%e T27c = 1/q - q^2 - q^5 + q^14 + q^20 + q^26 - q^29 - q^32 - q^35 + q^41 - ...

%t QP = QPochhammer; s = QP[q]/QP[q^9] + O[q]^90; CoefficientList[s, q] (* _Jean-François Alcover_, Nov 12 2015 *)

%o (PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) / eta(x^9 + A), n))} /* _Michael Somos_, Jun 26 2004 */

%Y Cf. A007706, A062245.

%K sign

%O 0,19

%A _N. J. A. Sloane_, Jul 01 2001

%E Additional comments from _Michael Somos_, Jun 28 2004