login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A192389 Coefficient of x in the reduction by x^2 -> x+1 of the polynomial p(n,x) defined at Comments. 2
0, 1, 3, 9, 22, 48, 96, 181, 327, 573, 982, 1656, 2760, 4561, 7491, 12249, 19966, 32472, 52728, 85525, 138615, 224541, 363598, 588624, 952752, 1541953, 2495331, 4037961, 6534022, 10572768, 17107632, 27681301, 44789895, 72472221, 117263206 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

The titular polynomials are defined recursively: p(n,x) = x*p(n-1,x) +1 +n^2, with p(0,x)=1. For an introduction to reductions of polynomials by substitutions such as x^2 -> x+1, see A192232 and A192744.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (4,-5,1,2,-1).

FORMULA

a(n) = 4*a(n-1) - 5*a(n-2) + a(n-3) + 2*a(n-4) - a(n-5).

G.f.: x*(1-x+2*x^2)/((1-x)^3*(1-x-x^2)). - Colin Barker, May 12 2014

a(n) = 3*Fibonacci(n+4) - n*(n+4) - 9. - Ehren Metcalfe, Jul 13 2019

MATHEMATICA

(* First program *)

p[0, x]:= 1; p[n_, x_]:= x*p[n-1, x] +n^2 +1;

Table[Expand[p[n, x]], {n, 0, 7}]

reduce[{p1_, q_, s_, x_}]:= FixedPoint[(s PolynomialQuotient @@ #1 + PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1]

t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}];

u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}] (* A192953 *)

u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}] (* A192389 *)

(* Additional programs *)

CoefficientList[Series[x*(1-x+2*x^2)/((1-x)^3*(1-x-x^2)), {x, 0, 40}], x] (* Vincenzo Librandi, May 13 2014 *)

Table[3*Fibonacci[n+4] -n*(n+4)-9, {n, 0, 40}] (* G. C. Greubel, Jul 24 2019 *)

PROG

(PARI) Vec(x*(1-x+2*x^2)/((1-x)^3*(1-x-x^2)) + O(x^40)) \\ Colin Barker, May 12 2014

(PARI) vector(40, n, n--; 3*fibonacci(n+2)-n*(n+4)-9) \\ G. C. Greubel, Jul 24 2019

(MAGMA) [3*Fibonacci(n+2)-n*(n+4)-9: n in [0..40]]; // G. C. Greubel, Jul 24 2019

(Sage) [3*fibonacci(n+2)-n*(n+4)-9 for n in (0..40)] # G. C. Greubel, Jul 24 2019

(GAP) List([0..40], n-> 3*Fibonacci(n+2)-n*(n+4)-9); # G. C. Greubel, Jul 24 2019

CROSSREFS

Cf. A000045, A192232, A192744, A192951.

Sequence in context: A217880 A217879 A217878 * A187053 A001937 A086817

Adjacent sequences:  A192386 A192387 A192388 * A192390 A192391 A192392

KEYWORD

nonn,easy

AUTHOR

Clark Kimberling, Jul 13 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 25 17:35 EST 2022. Contains 350572 sequences. (Running on oeis4.)