This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A192951 Coefficient of x in the reduction by x^2 -> x+1 of the polynomial p(n,x) defined at Comments. 44
 0, 1, 3, 9, 20, 40, 74, 131, 225, 379, 630, 1038, 1700, 2773, 4511, 7325, 11880, 19252, 31182, 50487, 81725, 132271, 214058, 346394, 560520, 906985, 1467579, 2374641, 3842300, 6217024, 10059410, 16276523, 26336025, 42612643, 68948766 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS The titular polynomials are defined recursively:  p(n,x) = x*p(n-1,x) + 3n - 1, with p(0,x)=1.  For an introduction to reductions of polynomials by substitutions such as x^2 -> x+1, see A192232 and A192744. ... The list of examples at A192744 is extended here; the recurrence is given by p(n,x) = x*p(n-1,x) + v(n), with p(0,x)=1, and the reduction of p(n,x) by x^2 -> x+1 is represented by u1 + u2*x: ... If v(n)=        n, then u1=A001595, u2=A104161. If v(n)=      n-1, then u1=A001610, u2=A066982. If v(n)=     3n-1, then u1=A171516, u2=A192951. If v(n)=     3n-2, then u1=A192746, u2=A192952. If v(n)=     2n-1, then u1=A111314, u2=A192953. If v(n)=      n^2, then u1=A192954, u2=A192955. If v(n)=   -1+n^2, then u1=A192956, u2=A192957. If v(n)=    1+n^2, then u1=A192953, u2=A192389. If v(n)=   -2+n^2, then u1=A192958, u2=A192959. If v(n)=    2+n^2, then u1=A192960, u2=A192961. If v(n)=    n+n^2, then u1=A192962, u2=A192963. If v(n)=   -n+n^2, then u1=A192964, u2=A192965. If v(n)= n(n+1)/2, then u1=A030119, u2=A192966. If v(n)= n(n-1)/2, then u1=A192967, u2=A192968. If v(n)= n(n+3)/2, then u1=A192969, u2=A192970. If v(n)=     2n^2, then u1=A192971, u2=A192972. If v(n)=   1+2n^2, then u1=A192973, u2=A192974. If v(n)=  -1+2n^2, then u1=A192975, u2=A192976. If v(n)=  1+n+n^2, then u1=A027181, u2=A192978. If v(n)=  1-n+n^2, then u1=A192979, u2=A192980. If v(n)=  (n+1)^2, then u1=A001891, u2=A053808. If v(n)=  (n-1)^2, then u1=A192981, u2=A192982. LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..400 Index entries for linear recurrences with constant coefficients, signature (3, -2, -1, 1). FORMULA a(n) = 3*a(n-1) - 2*a(n-2) - a(n-3) + a(n-4). From Bruno Berselli, Nov 16 2011: (Start) G.f.: x*(1+2*x^2)/((1-x)^2*(1 - x - x^2)). a(n) = ((25+13*t)*(1+t)^n + (25-13*t)*(1-t)^n)/(10*2^n) - 3*n - 5 = A000285(n+2) - 3*n - 5  where t=sqrt(5). (End) a(n) = Fibonacci(n+4) + 2*Fibonacci(n+2) - (3*n+5). - G. C. Greubel, Jul 12 2019 MATHEMATICA (* First program *) q = x^2; s = x + 1; z = 40; p[0, x]:= 1; p[n_, x_]:= x*p[n-1, x] + 3n - 1; Table[Expand[p[n, x]], {n, 0, 7}] reduce[{p1_, q_, s_, x_}]:= FixedPoint[(s PolynomialQuotient @@ #1 + PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1] t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}]; u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}] (* A171516 *) u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}] (* A192951 *) (* Additional programs *) LinearRecurrence[{3, -2, -1, 1}, {0, 1, 3, 9}, 40] (* Vincenzo Librandi, Nov 16 2011 *) With[{F=Fibonacci}, Table[F[n+4]+2*F[n+2]-(3*n+5), {n, 0, 40}]] (* G. C. Greubel, Jul 12 2019 *) PROG (MAGMA) I:=[0, 1, 3, 9]; [n le 4 select I[n] else 3*Self(n-1)-2*Self(n-2)-1*Self(n-3)+Self(n-4): n in [1..40]]; // Vincenzo Librandi, Nov 16 2011 (MAGMA) F:=Fibonacci; [F(n+4)+2*F(n+2)-(3*n+5): n in [0..40]]; // G. C. Greubel, Jul 12 2019 (PARI) a(n)=([0, 1, 0, 0; 0, 0, 1, 0; 0, 0, 0, 1; 1, -1, -2, 3]^n*[0; 1; 3; 9])[1, 1] \\ Charles R Greathouse IV, Mar 22 2016 (PARI) vector(40, n, n--; f=fibonacci; f(n+4)+2*f(n+2)-(3*n+5)) \\ G. C. Greubel, Jul 12 2019 (Sage) f=fibonacci; [f(n+4)+2*f(n+2)-(3*n+5) for n in (0..40)] # G. C. Greubel, Jul 12 2019 (GAP) F:=Fibonacci;; List([0..40], n-> F(n+4)+2*F(n+2)-(3*n+5)); # G. C. Greubel, Jul 12 2019 CROSSREFS Cf. A000045, A192232, A192744. Sequence in context: A145068 A293357 A202349 * A027114 A145070 A011796 Adjacent sequences:  A192948 A192949 A192950 * A192952 A192953 A192954 KEYWORD nonn,easy AUTHOR Clark Kimberling, Jul 13 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 14 12:25 EDT 2019. Contains 328006 sequences. (Running on oeis4.)