login
This site is supported by donations to The OEIS Foundation.

 

Logo

Many excellent designs for a new banner were submitted. We will use the best of them in rotation.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A192964 Constant term of the reduction by x^2->x+1 of the polynomial p(n,x) defined at Comments. 3
1, 0, 3, 7, 16, 31, 57, 100, 171, 287, 476, 783, 1281, 2088, 3395, 5511, 8936, 14479, 23449, 37964, 61451, 99455, 160948, 260447, 421441, 681936, 1103427, 1785415, 2888896, 4674367, 7563321, 12237748, 19801131, 32038943, 51840140, 83879151 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

The titular polynomials are defined recursively:  p(n,x)=x*p(n-1,x)-n+n^2, with p(0,x)=1.  For an introduction to reductions of polynomials by substitutions such as x^2->x+1, see A192232 and A192744.

LINKS

Table of n, a(n) for n=0..35.

FORMULA

a(n)=3*a(n-1)-2*a(n-2)-a(n-3)+a(n-4).

MATHEMATICA

q = x^2; s = x + 1; z = 40;

p[0, x] := 1;

p[n_, x_] := x*p[n - 1, x] + n^2 - n;

Table[Expand[p[n, x]], {n, 0, 7}]

reduce[{p1_, q_, s_, x_}] :=

FixedPoint[(s PolynomialQuotient @@ #1 +

       PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1]

t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}];

u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}]

  (* A192964 *)

u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}]

  (* A192965 *)

CROSSREFS

Cf. A192232, A192744, A192951, A192965.

Sequence in context: A224340 A240739 A000412 * A179904 A161810 A084631

Adjacent sequences:  A192961 A192962 A192963 * A192965 A192966 A192967

KEYWORD

nonn

AUTHOR

Clark Kimberling, Jul 13 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified April 21 11:47 EDT 2014. Contains 240824 sequences.