This site is supported by donations to The OEIS Foundation.

"Email this user" was broken Aug 14 to 9am Aug 16. If you sent someone a message in this period, please send it again.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A192964 Constant term of the reduction by x^2->x+1 of the polynomial p(n,x) defined at Comments. 3
 1, 0, 3, 7, 16, 31, 57, 100, 171, 287, 476, 783, 1281, 2088, 3395, 5511, 8936, 14479, 23449, 37964, 61451, 99455, 160948, 260447, 421441, 681936, 1103427, 1785415, 2888896, 4674367, 7563321, 12237748, 19801131, 32038943, 51840140, 83879151 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS The titular polynomials are defined recursively:  p(n,x) = x*p(n-1,x) - n + n^2, with p(0,x)=1.  For an introduction to reductions of polynomials by substitutions such as x^2->x+1, see A192232 and A192744. LINKS Index entries for linear recurrences with constant coefficients, signature (3,-2,-1,1). FORMULA a(n) = 3*a(n-1) - 2*a(n-2) - a(n-3) + a(n-4). G.f.: ( -1-5*x^2+x^3+3*x ) / ( (x^2+x-1)*(x-1)^2 ). - R. J. Mathar, May 11 2014 MATHEMATICA q = x^2; s = x + 1; z = 40; p[0, x] := 1; p[n_, x_] := x*p[n - 1, x] + n^2 - n; Table[Expand[p[n, x]], {n, 0, 7}] reduce[{p1_, q_, s_, x_}] := FixedPoint[(s PolynomialQuotient @@ #1 +        PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1] t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}]; u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}]   (* A192964 *) u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}]   (* A192965 *) CROSSREFS Cf. A192232, A192744, A192951, A192965. Sequence in context: A224340 A240739 A000412 * A179904 A161810 A084631 Adjacent sequences:  A192961 A192962 A192963 * A192965 A192966 A192967 KEYWORD nonn AUTHOR Clark Kimberling, Jul 13 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.