This site is supported by donations to The OEIS Foundation.

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A192964 Constant term of the reduction by x^2->x+1 of the polynomial p(n,x) defined at Comments. 3
 1, 0, 3, 7, 16, 31, 57, 100, 171, 287, 476, 783, 1281, 2088, 3395, 5511, 8936, 14479, 23449, 37964, 61451, 99455, 160948, 260447, 421441, 681936, 1103427, 1785415, 2888896, 4674367, 7563321, 12237748, 19801131, 32038943, 51840140, 83879151 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS The titular polynomials are defined recursively:  p(n,x) = x*p(n-1,x) - n + n^2, with p(0,x)=1.  For an introduction to reductions of polynomials by substitutions such as x^2->x+1, see A192232 and A192744. LINKS Index entries for linear recurrences with constant coefficients, signature (3,-2,-1,1). FORMULA a(n) = 3*a(n-1) - 2*a(n-2) - a(n-3) + a(n-4). G.f.: ( -1-5*x^2+x^3+3*x ) / ( (x^2+x-1)*(x-1)^2 ). - R. J. Mathar, May 11 2014 MATHEMATICA q = x^2; s = x + 1; z = 40; p[0, x] := 1; p[n_, x_] := x*p[n - 1, x] + n^2 - n; Table[Expand[p[n, x]], {n, 0, 7}] reduce[{p1_, q_, s_, x_}] := FixedPoint[(s PolynomialQuotient @@ #1 +        PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1] t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}]; u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}]   (* A192964 *) u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}]   (* A192965 *) CROSSREFS Cf. A192232, A192744, A192951, A192965. Sequence in context: A224340 A240739 A000412 * A179904 A161810 A084631 Adjacent sequences:  A192961 A192962 A192963 * A192965 A192966 A192967 KEYWORD nonn AUTHOR Clark Kimberling, Jul 13 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.