login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A293357
Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-2) + n +1, where a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4.
2
1, 3, 9, 20, 39, 71, 124, 211, 354, 586, 963, 1574, 2564, 4167, 6762, 10962, 17759, 28758, 46557, 75357, 121958, 197361, 319367, 516778, 836197, 1353029, 2189282, 3542369, 5731711, 9274142, 15005917, 24280125, 39286110, 63566305, 102852487, 166418866
OFFSET
0,2
COMMENTS
The complementary sequences a() and b() are uniquely determined by the titular equation and initial values. See A293076 for a guide to related sequences.
Conjecture: a(n)/a(n-1) -> (1 + sqrt(5))/2, the golden ratio.
EXAMPLE
a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, so that
a(2) = a(1) + a(0) + b(0) + 3 = 9;
a(3) = a(2) + a(1) + b(1) + 4 = 20.
Complement: (b(n)) = (2, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14,...)
MATHEMATICA
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
a[0] = 1; a[1] = 3; b[0] = 2; b[1] = 4;
a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 2] + n + 1;
b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
Table[a[n], {n, 0, 40}] (* A293357 *)
Table[b[n], {n, 0, 10}]
CROSSREFS
Cf. A001622 (golden ratio), A293076.
Sequence in context: A225385 A037257 A145068 * A202349 A192951 A027114
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Oct 28 2017
STATUS
approved