login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A192746 Constant term of the reduction by x^2 -> x+1 of the polynomial p(n,x) defined below in Comments. 5
1, 5, 9, 17, 29, 49, 81, 133, 217, 353, 573, 929, 1505, 2437, 3945, 6385, 10333, 16721, 27057, 43781, 70841, 114625, 185469, 300097, 485569, 785669, 1271241, 2056913, 3328157, 5385073, 8713233, 14098309, 22811545, 36909857, 59721405, 96631265 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
The titular polynomial is defined recursively by p(n,x)=x*(n-1,x)+3n+1 for n>0, where p(0,x)=1. For discussions of polynomial reduction, see A192232 and A192744.
LINKS
FORMULA
G.f.: (1+3*x-x^2)/((1-x)*(1-x-x^2)), so the first differences are (essentially) A022087. - R. J. Mathar, May 04 2014
a(n) = 4*Fibonacci(n+2)-3. - Gerry Martens, Jul 04 2015
MATHEMATICA
(* First program *)
q = x^2; s = x + 1; z = 40;
p[0, n_]:= 1; p[n_, x_]:= x*p[n-1, x] +3n +2;
Table[Expand[p[n, x]], {n, 0, 7}]
reduce[{p1_, q_, s_, x_}]:= FixedPoint[(s PolynomialQuotient @@ #1 + PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1]
t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}];
u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}] (* A192746 *)
u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}] (* A192747 *) (* Clark Kimberling, Jul 09 2011 *)
(* Additional programs *)
a[0]=1; a[1]=5; a[n_]:=a[n]=a[n-1]+a[n-2]+3; Table[a[n], {n, 0, 36}] (* Gerry Martens, Jul 04 2015 *)
4*Fibonacci[Range[0, 40]+2]-3 (* G. C. Greubel, Jul 24 2019 *)
PROG
(PARI) vector(30, n, n--; 4*fibonacci(n+2)-3) \\ G. C. Greubel, Jul 24 2019
(Magma) [4*Fibonacci(n+2)-3: n in [0..30]]; // G. C. Greubel, Jul 24 2019
(Sage) [4*fibonacci(n+2)-3 for n in (0..30)] # G. C. Greubel, Jul 24 2019
(GAP) List([0..30], n-> 4*Fibonacci(n+2)-3); # G. C. Greubel, Jul 24 2019
CROSSREFS
Sequence in context: A200078 A190806 A294774 * A081295 A180565 A233187
KEYWORD
nonn
AUTHOR
Clark Kimberling, Jul 09 2011
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 8 03:15 EST 2023. Contains 367662 sequences. (Running on oeis4.)