OFFSET
1,1
LINKS
Index entries for linear recurrences with constant coefficients, signature (5,-9,7,-2).
FORMULA
a(1) = 3; a(n) = a(n-1) + 2^n + n for n > 1.
From Colin Barker, Oct 27 2014: (Start)
a(n) = (-4+2^(2+n)+n+n^2)/2.
a(n) = 5*a(n-1)-9*a(n-2)+7*a(n-3)-2*a(n-4).
G.f.: x*(2*x^2-6*x+3) / ((x-1)^3*(2*x-1)).
(End)
EXAMPLE
a(2) = a(1) + 2^2 + 2 = 3 + 4 + 2 = 9; a(3) = a(2) + 2^3 + 3 = 9 + 8 + 3 = 20.
MAPLE
MATHEMATICA
lst={}; s=0; Do[s+=2^n+n; AppendTo[lst, s], {n, 5!}]; lst
Accumulate[Table[2^n+n, {n, 50}]] (* or *) LinearRecurrence[{5, -9, 7, -2}, {3, 9, 20, 40}, 50] (* Harvey P. Dale, Aug 22 2020 *)
PROG
(ARIBAS) a:=0; for n:=1 to 30 do a:=a+2**n+n; write(a, ", "); end;
(PARI) Vec(x*(2*x^2-6*x+3) / ((x-1)^3*(2*x-1)) + O(x^100)) \\ Colin Barker, Oct 27 2014
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vladimir Joseph Stephan Orlovsky, Sep 30 2008
EXTENSIONS
Edited by Klaus Brockhaus, Oct 14 2008
STATUS
approved