OFFSET
0,2
COMMENTS
Partial sums of A000325, starting at n=1. - Klaus Brockhaus, Oct 13 2008
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (5,-9,7,-2).
FORMULA
a(0) = 1; a(n) = a(n-1) + 2^(n+1) - (n+1) for n > 0. - Klaus Brockhaus, Oct 13 2008
From Colin Barker, Oct 27 2014: (Start)
a(n) = (-2+2^(2+n)-1/2*(1+n)*(2+n)).
a(n) = 5*a(n-1)-9*a(n-2)+7*a(n-3)-2*a(n-4).
G.f.: (2*x^2-2*x+1) / ((x-1)^3*(2*x-1)).
(End)
MATHEMATICA
lst={}; s=0; Do[s+=2^n-n; AppendTo[lst, s], {n, 5!}]; lst (* Vladimir Joseph Stephan Orlovsky, Sep 30 2008 *)
Table[(8*2^n-n^2-3n-6)/2, {n, 0, 30}]
LinearRecurrence[{5, -9, 7, -2}, {1, 3, 8, 20}, 40] (* Harvey P. Dale, Aug 28 2019 *)
PROG
(ARIBAS) a:=0; for n:=1 to 30 do a:=a+2**n-n; write(a, ", "); end; # Klaus Brockhaus, Oct 13 2008
(Magma) [( 8*(2^n) -n^2 -3*n -6 )/2: n in [0..30]]; // Vincenzo Librandi, Sep 23 2011
(PARI) Vec((2*x^2-2*x+1) / ((x-1)^3*(2*x-1)) + O(x^100)) \\ Colin Barker, Oct 27 2014
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Better description from Frank Ellermann, Mar 16 2002
Corrected by T. D. Noe, Nov 08 2006
STATUS
approved