OFFSET
0,4
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (4,-5,1,2,-1).
FORMULA
a(n) = 4*a(n-1) - 5*a(n-2) + a(n-3) + 2*a(n-4) - a(n-5).
G.f.: x*(1 -3*x +4*x^2 -x^3)/((1-x-x^2)*(1-x)^3). - R. J. Mathar, May 11 2014
a(n) = 3*Fibonacci(n+2) -(n^2+3*n+6)/2. - G. C. Greubel, Jul 11 2019
MATHEMATICA
Table[3*Fibonacci[n+2] -(n^2+3*n+6)/2, {n, 0, 40}] (* G. C. Greubel, Jul 11 2019 *)
PROG
(PARI) vector(40, n, n--; 3*fibonacci(n+2) -(n^2+3*n+6)/2) \\ G. C. Greubel, Jul 11 2019
(Magma) [3*Fibonacci(n+2) -(n^2+3*n+6)/2: n in [0..40]]; // G. C. Greubel, Jul 11 2019
(Sage) [3*fibonacci(n+2) -(n^2+3*n+6)/2 for n in (0..40)] # G. C. Greubel, Jul 11 2019
(GAP) List([0..40], n-> 3*Fibonacci(n+2) -(n^2+3*n+6)/2); # G. C. Greubel, Jul 11 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Jul 13 2011
STATUS
approved