login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A192950 a(n) = A192942(n)/2. 3
0, 1, 5, 31, 224, 1844, 17028, 174284, 1958176, 23959760, 317128240, 4514617360, 68784608640, 1116787186240, 19248968150720, 351024831699520, 6752328440253440, 136640443206206720, 2901703626188801280, 64522443639953657600 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

See A192942.

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..440

FORMULA

a(n) = 1/10*sqrt(5)*Gamma(n+2+sqrt(5))/Gamma(sqrt(5)+2) - 1/10*sin(Pi*(sqrt(5)+3))*Gamma(sqrt(5)+1)*Gamma(n+2-sqrt(5))/(Pi*(sqrt(5)-1)). - Vaclav Kotesovec, Oct 26 2012

EXAMPLE

(See A192942.)

MATHEMATICA

(* First program *)

q = x^2; s = x + 1; z = 26;

p[0, x]:= 1;

p[n_, x_]:= (2*x + n)*p[n-1, x];

Table[Expand[p[n, x]], {n, 0, 7}]

reduce[{p1_, q_, s_, x_}]:= FixedPoint[(s PolynomialQuotient @@ #1 + PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1]

t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}];

u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}] (* A192941 *)

u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}] (* A192942 *)

u2/2 (* A192950 *)

(* Additional programs *)

With[{s = Sqrt[5]}, Table[FullSimplify[(s*Gamma[n+2+s]/Gamma[s+2] - Sin[Pi*(s+3)]*Gamma[s+1]*Gamma[n+2-s]/(Pi*(s-1)))/10], {n, 0, 20}]] (* G. C. Greubel, Jul 25 2019 *)

PROG

(PARI) default(realprecision, 100); vector(20, n, n--; s=sqrt(5); round(s*gamma(n+2+s)/gamma(s+2) - sin(Pi*(s+3))*gamma(s+1)*gamma(n+2-s)/(Pi*(s-1)))/10 ) \\ G. C. Greubel, Jul 25 2019

(MAGMA) SetDefaultRealField(RealField(100)); R:= RealField(); s:=Sqrt(5); [Round(s*Gamma(n+2+s)/Gamma(s+2) - Sin(Pi(R)*(s+3))*Gamma(s+1) *Gamma(n+2-s)/(Pi(R)*(s-1)))/10: n in [0..20]]; // G. C. Greubel, Jul 25 2019

(Sage) s=sqrt(5); [round(s*gamma(n+2+s)/gamma(s+2) - sin(pi*(s+3))* gamma(s+1)*gamma(n+2-s)/(pi*(s-1)))/10 for n in (0..20)] # G. C. Greubel, Jul 25 2019

CROSSREFS

Cf. A192942.

Sequence in context: A199877 A058309 A226924 * A001910 A052773 A062147

Adjacent sequences:  A192947 A192948 A192949 * A192951 A192952 A192953

KEYWORD

nonn

AUTHOR

Clark Kimberling, Jul 13 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 15 15:10 EST 2019. Contains 329999 sequences. (Running on oeis4.)