login
A083365
Expansion of psi(x) / phi(x) in powers of x where phi(), psi() are Ramanujan theta functions.
19
1, -1, 2, -3, 4, -6, 9, -12, 16, -22, 29, -38, 50, -64, 82, -105, 132, -166, 208, -258, 320, -395, 484, -592, 722, -876, 1060, -1280, 1539, -1846, 2210, -2636, 3138, -3728, 4416, -5222, 6163, -7256, 8528, -10006, 11716, -13696, 15986, -18624, 21666, -25169, 29190, -33808, 39104
OFFSET
0,3
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Convolution square is A079006.
Convolution inverse is A029838.
REFERENCES
B. C. Berndt, Ramanujan's Notebooks Part III, Springer-Verlag, see p. 221 Entry 1(i).
A. Cayley, A memoir on the transformation of elliptic functions, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 9, p. 128.
H. T. Davis, Introduction to nonlinear differential and integral equations, Dover Publications, Inc., New York 1962, p. 170 MR0181773 (31 #6000)
LINKS
A. Cayley, A memoir on the transformation of elliptic functions, Philosophical Transactions of the Royal Society of London (1874): 397-456; Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, included in Vol. 9. [Annotated scan of pages 126-129]
W. Duke, Continued fractions and modular functions, Bull. Amer. Math. Soc. 42 (2005), 137-162; see Eqs. (9.1),(9.3).
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions, q-Pochhammer Symbol
FORMULA
Expansion of f(-x^4) / f(x) = psi(x) / phi(x) = psi(x^2) / psi(x) = psi(-x) / phi(-x^2) = 1 / (chi(x) * chi(-x^2)) = 1 / (chi^2(x) * chi(-x)) = chi(-x) / chi^2(-x^2) = (psi(x^2) / phi(x))^(1/2) in powers of x where phi(), psi(), chi(), f() are Ramanujan theta functions.
Expansion of k^(1/4) / (2^(1/2) * q^(1/8)) in powers of q where k is elliptic modulus and q is the nome.
Expansion of q^(-1/8) * eta(q) * eta(q^4)^2 / eta(q^2)^3 in powers of q.
Given g.f. A(x), then B(q) = q * A(q^8) satisfies 0 = f(B(q), B(q^2)) where f(u, v) = v^2 - u^4 * (1 + 4*v^4).
Given g.f. A(x), then B(q) = q * A(q^8) satisfies 0 = f(B(q), B(q^3)) where f(u, v) = v^4 - u^4 + u*v + 4*(u*v)^3.
Given g.f. A(x), then B(q) = q * A(q^8) satisfies 0 = f(B(q), B(q^2), B(q^4)) where f(u, v, w) = w - u^2*v*(1 + 2*w^2). - Michael Somos, May 29 2005
Given g.f. A(x), then B(q) = q * A(q^8) satisfies 0 = f(B(q), B(q^2), B(q^3), B(q^6)) where f(u1, u2, u3, u6) = u2*u6 - u1*u3 * (u2^2 + u6^2). - Michael Somos, May 29 2005
Given g.f. A(x), then B(q) = sqrt(2) * q * A(q^8) satisfies 0 = f(B(q), B(q^7)) where f(u, v) = (1 - u^8) * (1 - v^8) - (1 - u*v)^8. - Michael Somos, Jan 01 2006
Euler transform of period 4 sequence [-1, 2, -1, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (32 t)) = 2^(-1/2) * g(t) where q = exp(2 Pi i t) and g() is the g.f. for A108494. - Michael Somos, Feb 29 2012
G.f.: Product_{k>0} (1 + x^(2*k)) / (1 + x^(2*k - 1)) = (Sum_{k>0} x^(k^2 - k)) / (Sum_{k>0} x^((k^2 - k)/2)).
G.f.: 1 / (1 + x / (1 + x + x^2 / (1 + x^2 + x^3 / (1 + x^3 + ...)))).
A001935(n) = (-1)^n a(n).
G.f.: (1+1/Q(0))/2, where Q(k)= 1 + x^(k+1) + x^(k+1)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Apr 30 2013
a(n) ~ (-1)^n * exp(Pi*sqrt(n/2))/(2^(11/4)*n^(3/4)). - Vaclav Kotesovec, Jul 04 2016
G.f.: (-x^2; x^2)_{-1/2} = ((-1; x^2)_{1/2})/2, where (a; q)_n is the q-Pochhammer symbol. - Vladimir Reshetnikov, Nov 20 2016
a(0) = 1, a(n) = -(1/n)*Sum_{k=1..n} A109506(k)*a(n-k) for n > 0. - Seiichi Manyama, Apr 14 2017
a(n) ~ (-1)^n * exp(Pi*sqrt(n/2)) / (2^(11/4) * n^(3/4)). - Vaclav Kotesovec, Nov 15 2017
G.f.: exp(Sum_{k>=1} (-1)^k*x^k/(k*(1 + x^k))). - Ilya Gutkovskiy, May 28 2018
EXAMPLE
G.f. = 1 - x + 2*x^2 - 3*x^3 + 4*x^4 - 6*x^5 + 9*x^6 - 12*x^7 + 16*x^8 - 22*x^9 + ...
G.f. = q - q^9 + 2*q^17 - 3*q^25 + 4*q^33 - 6*q^41 + 9*q^49 - 12*q^57 + 16*q^65 + ...
MATHEMATICA
phi[x_] := EllipticTheta[3, 0, x]; psi[x_] := (1/2)*x^(-1/8)*EllipticTheta[2, 0, x^(1/2)]; s = Series[ psi[x]/phi[x], {x, 0, 100}]; A083365 = CoefficientList[s, x] (* Jean-François Alcover, Feb 18 2015 *)
nmax = 50; CoefficientList[Series[Product[(1 + x^(2*k))^2/(1 + x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 04 2016 *)
(QPochhammer[-x^2, x^2, -1/2] + O[x]^50)[[3]] (* Vladimir Reshetnikov, Nov 20 2016 *)
a[ n_] := SeriesCoefficient[ QPochhammer[ -x^2, x^2] / QPochhammer[ -x, x^2], {x, 0, n}]; (* Michael Somos, Oct 10 2019~ *)
PROG
(PARI) {a(n) = my(A, m); if( n<0, 0, A = 1 + O(x); m=1; while( m<=n, m*=2; A = subst(A, x, x^2); A = sqrt(A / (1 + 4 * x * A^2))); polcoeff(sqrt(A), n))};
(PARI) {a(n) = my(A); if( n<0, 0, A = contfracpnqn( matrix(2, (sqrtint(8*n + 1) + 1)\2, i, j, if( i==1, x^(j-1), 1 + if( j>1, x^(j-1))))); polcoeff(A[2, 1] / A[1, 1] + x * O(x^n), n))};
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) * eta(x^4 + A)^2 / eta(x^2 + A)^3, n))};
CROSSREFS
(psi(x) / phi(x))^b: this sequence (b=1), A079006 (b=2), A187053 (b=3), A001938 (b=4), A195861 (b=5), A320049 (b=6), A320050 (b=7).
Sequence in context: A271147 A069907 A280424 * A001935 A286141 A007604
KEYWORD
sign
AUTHOR
Michael Somos, Apr 24 2003
STATUS
approved