

A069907


Number of hexagons that can be formed with perimeter n. In other words, partitions of n into six parts such that the sum of any 5 is more than the sixth.


6



0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 4, 6, 9, 12, 16, 22, 28, 37, 46, 59, 71, 91, 107, 134, 157, 193, 222, 271, 308, 371, 419, 499, 559, 661, 734, 860, 952, 1106, 1216, 1405, 1537, 1764, 1923, 2193, 2381, 2703, 2923, 3301, 3561, 4002, 4302, 4817, 5164
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,9


REFERENCES

G. E. Andrews, P. Paule and A. Riese, MacMahon's Partition Analysis IX: kgon partitions, Bull. Austral Math. Soc., 64 (2001), 321329.


LINKS

T. D. Noe, Table of n, a(n) for n = 0..1000
G. E. Andrews, P. Paule and A. Riese, MacMahon's partition analysis III. The Omega package, p. 19.


FORMULA

G.f.: x^6*(1x^4+x^5+x^7x^8x^13)/((1x)*(1x^2)*(1x^3)*(1x^4)*(1x^6)*(1x^8)*(1x^10)).


CROSSREFS

Cf. A005044, A062890, A069906.
Sequence in context: A187020 A058647 A271147 * A280424 A083365 A001935
Adjacent sequences: A069904 A069905 A069906 * A069908 A069909 A069910


KEYWORD

nonn,easy


AUTHOR

N. J. A. Sloane, May 05, 2002


STATUS

approved



