login
A069904
Number of prime factors of n-th triangular number (with multiplicity).
14
0, 1, 2, 2, 2, 2, 3, 4, 3, 2, 3, 3, 2, 3, 5, 4, 3, 3, 3, 4, 3, 2, 4, 5, 3, 4, 5, 3, 3, 3, 5, 6, 3, 3, 5, 4, 2, 3, 5, 4, 3, 3, 3, 5, 4, 2, 5, 6, 4, 4, 4, 3, 4, 5, 5, 5, 3, 2, 4, 4, 2, 4, 8, 7, 4, 3, 3, 4, 4, 3, 5, 5, 2, 4, 5, 4, 4, 3, 5, 8, 5, 2, 4, 5, 3, 3, 5, 4, 4, 5
OFFSET
1,3
LINKS
FORMULA
a(n) = A001222(A000217(n)).
From Antti Karttunen, Oct 07 2017: (Start)
a(n) = (A001222(n)+A001222(n+1))-1.
a(n) = A001222(A278253(n)). (End)
From Alois P. Heinz, Aug 05 2019: (Start)
a(n) = 2 <=> n in { A164977 }.
a(n) = 3 <=> n in { A108815 }.
a(n) = 4 <=> n in { A114435 }.
a(n) = 5 <=> n in { A114436 }.
a(n) = 6 <=> n in { A114437 }.
a(n) = 7 <=> n in { A240527 }.
a(n) = 8 <=> n in { A240528 }.
a(n) = 9 <=> n in { A240529 }.
a(n) = 10 <=> n im { A101745 }. (End)
EXAMPLE
A000217(8) = 8*(8+1)/2 = 36 = 2*2*3*3, therefore a(8) = 4.
MATHEMATICA
Array[Plus@@Last/@FactorInteger[ #*(#+1)/2]&, 33] (* Vladimir Joseph Stephan Orlovsky, Feb 28 2010 *)
PROG
(PARI) A069904(n) = bigomega((n*(n+1))/2); \\ Antti Karttunen, Oct 07 2017
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Apr 10 2002
STATUS
approved