login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A164978
Number of divisors of n*(n+1)/2 that are >= n.
5
1, 1, 2, 2, 2, 2, 3, 4, 3, 2, 4, 4, 2, 4, 7, 4, 3, 3, 4, 7, 4, 2, 6, 8, 3, 4, 7, 4, 4, 4, 5, 9, 4, 4, 11, 6, 2, 4, 11, 6, 4, 4, 4, 11, 6, 2, 8, 11, 4, 6, 7, 4, 4, 7, 11, 11, 4, 2, 8, 8, 2, 6, 16, 11, 7, 4, 4, 7, 8, 4, 9, 9, 2, 6, 11, 8, 8, 4, 8, 18, 5, 2, 8, 15, 4, 4, 11, 6, 6, 11, 8, 7, 4, 4, 18, 10, 3, 8
OFFSET
1,3
COMMENTS
a(n) = 2 <=> the set S = {1..n} has only one decomposition into smaller subsets with equal element sum.
LINKS
Alois P. Heinz and T. D. Noe, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
FORMULA
a(n) = |{d|n*(n+1)/2 : d>=n}|.
EXAMPLE
a(6) = 2, because 6*7/2=21 with divisors {1,3,7,21}, but only 7 and 21 are >=6. S={1..6} has only one decomposition into smaller subsets with equal element sum: {1,6}, {2,5}, {3,4}.
a(7) = 3; 7*8/2=28 with divisors {1,2,4,7,14,28}, 3 of which are >=7. S={1..7} has 5 decompositions into smaller subsets with equal element sum.
MAPLE
with(numtheory):
a:= n-> nops(select(x-> x>=n, divisors(n*(n+1)/2))):
seq(a(n), n=1..120);
CROSSREFS
Sequence in context: A262944 A322789 A069904 * A119789 A025424 A216505
KEYWORD
easy,nonn
AUTHOR
Alois P. Heinz, Sep 03 2009
STATUS
approved