login
A119789
T(n, k) = floor(log_{goldenratio}(Fibonacci(n)*Fibonacci(k))), with T(n, k) = 0 for n < 3, T(n, 0) = n-2 for n > 2, triangle read by rows.
1
0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2, 3, 4, 3, 3, 3, 4, 5, 6, 4, 4, 4, 5, 6, 7, 8, 5, 5, 5, 6, 7, 8, 9, 10, 6, 6, 6, 7, 8, 9, 10, 11, 12, 7, 7, 7, 8, 9, 10, 11, 12, 13, 14, 8, 8, 8, 9, 10, 11, 12, 13, 14, 15, 16
OFFSET
0,10
FORMULA
T(n, k) = floor(log_{goldenratio}(Fibonacci(n)*Fibonacci(k))), with T(n, k) = 0 for n < 3, T(n, 0) = n-2 for n > 2.
From G. C. Greubel, Dec 17 2022: (Start)
T(n, k) = n+k-4, with T(n, k) = 0 for n < 3, T(n, 0) = n-2 for n >= 3.
T(n, n) = 2*T(n, 0).
T(2*n, n) = 0*[n<2] + A016789(n-2)*[n>1].
T(2*n, n+1) = 3*A001477(n-1), for n > 0.
T(2*n, n-1) = A033627(n) - [n=1].
T(3*n, n) = n*[n<2] + 4*A000027(n-2)*[n>1].
Sum_{k=0..n} T(n, k) = 0*[n<2] + A140090(n-2)*[n>1].
Sum_{k=0..n} (-1)^k * T(n, k) = 0*[n<2] + (-1)^n*A064455(n-2)*[n>1]. (End)
EXAMPLE
Triangle begins as:
0;
0, 0;
0, 0, 0;
1, 1, 1, 2;
2, 2, 2, 3, 4;
3, 3, 3, 4, 5, 6;
4, 4, 4, 5, 6, 7, 8;
5, 5, 5, 6, 7, 8, 9, 10;
MATHEMATICA
f[n_, k_]= If[n<3, 0, If[k==0, n-2, Floor[Log[GoldenRatio, Fibonacci[n]*Fibonacci[k]]]]];
Table[f[n, k], {n, 0, 12}, {k, 0, n}]//Flatten
(* Second program *)
T[n_, k_]:= T[n, k]= If[n<3, 0, If[k<2, n-2, n+k-4]];
Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Dec 17 2022 *)
PROG
(Magma)
A119789:= func< n, k | n le 2 select 0 else k le 1 select n-2 else n+k-4 >;
[A119789(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Dec 17 2022
(SageMath)
def A119789(n, k):
if (n<3): return 0
elif (k<2): return n-2
else: return n+k-4
flatten([[A119789(n, k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Dec 17 2022
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Jul 30 2006
EXTENSIONS
Edited by G. C. Greubel, Dec 17 2022
STATUS
approved