login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A288255
Number of nonagons that can be formed with perimeter n.
11
1, 1, 2, 3, 5, 7, 11, 14, 21, 28, 39, 50, 69, 87, 116, 145, 189, 233, 299, 363, 458, 553, 687, 820, 1009, 1195, 1453, 1709, 2058, 2404, 2872, 3331, 3948, 4557, 5361, 6152, 7194, 8215, 9547, 10853, 12543, 14199, 16329, 18407, 21067, 23666, 26964, 30179, 34248, 38207
OFFSET
9,3
COMMENTS
Number of (a1, a2, ... , a9) where 1 <= a1 <= ... <= a9 and a1 + a2 + ... + a8 > a9.
LINKS
G. E. Andrews, P. Paule and A. Riese, MacMahon's Partition Analysis IX: k-gon partitions, Bull. Austral Math. Soc., 64 (2001), 321-329.
Index entries for linear recurrences with constant coefficients, signature (0, 1, 0, 1, 0, 0, 0, 0, 1, -1, -1, 0, -1, -1, 0, 0, 0, -1, 1, 0, 0, 1, 1, 2, 0, 1, 1, 0, 0, 1, -1, -1, -2, -1, -1, -2, 0, -1, -1, -1, 1, 1, 1, 0, 2, 1, 1, 2, 1, 1, -1, 0, 0, -1, -1, 0, -2, -1, -1, 0, 0, -1, 1, 0, 0, 0, 1, 1, 0, 1, 1, -1, 0, 0, 0, 0, -1, 0, -1, 0, 1).
FORMULA
G.f.: x^9/((1-x)*(1-x^2)* ... *(1-x^9)) - x^16/(1-x) * 1/((1-x^2)*(1-x^4)* ... *(1-x^16)).
a(2*n+16) = A026815(2*n+16) - A288343(n), a(2*n+17) = A026815(2*n+17) - A288343(n) for n >= 0. - Seiichi Manyama, Jun 08 2017
CROSSREFS
Number of k-gons that can be formed with perimeter n: A005044 (k=3), A062890 (k=4), A069906 (k=5), A069907 (k=6), A288253 (k=7), A288254 (k=8), this sequence (k=9), A288256 (k=10).
Sequence in context: A051014 A035968 A112581 * A325853 A035976 A035985
KEYWORD
nonn,easy
AUTHOR
Seiichi Manyama, Jun 07 2017
STATUS
approved