login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A083363
Diagonal of table A083362.
3
1, 7, 11, 30, 38, 69, 81, 124, 140, 195, 215, 282, 306, 385, 413, 504, 536, 639, 675, 790, 830, 957, 1001, 1140, 1188, 1339, 1391, 1554, 1610, 1785, 1845, 2032, 2096, 2295, 2363, 2574, 2646, 2869, 2945, 3180, 3260, 3507, 3591, 3850, 3938, 4209, 4301, 4584
OFFSET
0,2
COMMENTS
A083362 is the square table of least distinct positive integers such that the sum of any two consecutive terms in any row form a square.
FORMULA
a(0) = 1; a(2n-1) = 8n^2 - n (n>0); a(2n) = 8n^2 + 3n (n>0).
a(n) = a(n-1)+2*a(n-2)-2*a(n-3)-a(n-4)+a(n-5). - Colin Barker, Sep 26 2014
G.f.: (x^5-x^4-7*x^3-2*x^2-6*x-1) / ((x-1)^3*(x+1)^2). - Colin Barker, Sep 26 2014
a(n) = (4n+3)*(2n+1-(-1)^n)/4+0^n. - Wesley Ivan Hurt, Sep 26 2014
MAPLE
A083363:=n->(4*n+3)*(2*n+1-(-1)^n)/4+0^n: seq(A083363(n), n=0..50); # Wesley Ivan Hurt, Sep 26 2014
MATHEMATICA
Join[{1}, Table[(4 n + 3) (2 n + 1 - (-1)^n)/4, {n, 30}]] (* Wesley Ivan Hurt, Sep 26 2014 *)
LinearRecurrence[{1, 2, -2, -1, 1}, {1, 7, 11, 30, 38, 69}, 50] (* Harvey P. Dale, Oct 04 2023 *)
PROG
(PARI) Vec((x^5-x^4-7*x^3-2*x^2-6*x-1)/((x-1)^3*(x+1)^2) + O(x^100)) \\ Colin Barker, Sep 26 2014
(Magma) [(4*n+3)*(2*n+1-(-1)^n)/4+0^n : n in [0..50]]; // Wesley Ivan Hurt, Sep 26 2014
CROSSREFS
Cf. A083362.
Sequence in context: A153325 A109907 A121534 * A027707 A046861 A078917
KEYWORD
nonn,easy
AUTHOR
Paul D. Hanna, Apr 27 2003
STATUS
approved