login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A308809
Sum of all the parts in the partitions of n into 4 primes.
4
0, 0, 0, 0, 0, 0, 0, 0, 8, 9, 10, 22, 24, 26, 42, 30, 48, 51, 72, 76, 120, 63, 132, 115, 168, 125, 234, 135, 308, 203, 330, 217, 416, 198, 476, 315, 540, 296, 684, 351, 840, 410, 798, 473, 1056, 450, 1196, 564, 1248, 637, 1500, 612, 1768, 795, 1782, 880
OFFSET
0,9
FORMULA
a(n) = n * Sum_{k=1..floor(n/4)} Sum_{j=k..floor((n-k)/3)} Sum_{i=j..floor((n-j-k)/2)} c(i) * c(j) * c(k) * c(n-i-j-k), where c = A010051.
a(n) = n * A259194(n).
a(n) = A308771(n) + A308772(n) + A308773(n) + A308774(n).
MATHEMATICA
Table[n*Sum[Sum[Sum[(PrimePi[k] - PrimePi[k - 1])*(PrimePi[j] - PrimePi[j - 1]) (PrimePi[i] - PrimePi[i - 1]) (PrimePi[n - i - j - k] - PrimePi[n - i - j - k - 1]), {i, j, Floor[(n - j - k)/2]}], {j, k, Floor[(n - k)/3]}], {k, Floor[n/4]}], {n, 0, 50}]
Table[Total[Flatten[Select[IntegerPartitions[n, {4}], AllTrue[#, PrimeQ]&]]], {n, 0, 60}] (* Harvey P. Dale, Sep 28 2024 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Jun 25 2019
STATUS
approved