login
A308773
Sum of the second largest parts in the partitions of n into 4 prime parts.
4
0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 3, 5, 6, 5, 11, 8, 13, 12, 20, 17, 28, 15, 32, 26, 41, 24, 53, 33, 75, 48, 83, 57, 103, 54, 126, 80, 143, 71, 170, 93, 219, 112, 217, 122, 276, 120, 310, 145, 320, 148, 376, 160, 446, 190, 443, 218, 532, 196, 587, 240, 613, 246
OFFSET
0,9
FORMULA
a(n) = Sum_{k=1..floor(n/4)} Sum_{j=k..floor((n-k)/3)} Sum_{i=j..floor((n-j-k)/2)} c(k) * c(j) * c(i) * c(n-i-j-k) * i, where c = A010051.
a(n) = A308809(n) - A308771(n) - A308772(n) - A308774(n).
MATHEMATICA
Table[Sum[Sum[Sum[i (PrimePi[k] - PrimePi[k - 1])*(PrimePi[j] - PrimePi[j - 1]) (PrimePi[i] - PrimePi[i - 1]) (PrimePi[n - i - j - k] - PrimePi[n - i - j - k - 1]), {i, j, Floor[(n - j - k)/2]}], {j, k, Floor[(n - k)/3]}], {k, Floor[n/4]}], {n, 0, 100}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Jun 23 2019
STATUS
approved